首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dihydropyridin-2-imines were synthesized and biologically evaluated both in vitro and in vivo using a nitric oxide inhibition assay. Compounds 1, 4, 5 and 7-11 exhibited potent activity in the inducible nitric oxide (iNOS) inhibition assay. Of these 5, 6, 9 and 10 showed 5- to 11-fold increases in isoform selectivity. Compounds 1, 5, 9 and 10 showed potent inhibitory activity in the NOx accumulation assay in mice. Compounds 1 and 5 also showed good bioavailability (BA) when given orally.  相似文献   

2.
Syntheses and evaluation of pyrrolidin-2-imines and 1,3-thiazolidin-2-imines as inhibitors of nitric oxide synthase (NOS) are discussed. An extensive SAR was established for pyrrolidin-2-imines class of compounds. The amidines came out as the most potent inhibitors in addition to displaying selectivity.  相似文献   

3.
Bioassay-guided fractionation of the root extract of Asarum sieboldii led to the isolation of the four active compounds (-)-sesamin (1), (2E,4E,8Z,10E)-N-(2-methylpropyl)dodeca-2,4,8,10-tetraenamide (2), kakuol (3), and '3,4,5-trimethoxytoluene' (=1,2,3-trimethoxy-5-methylbenzene; 4), in terms of inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Compounds 1-4 showed potent inhibition of NO production, with IC(50) values in the low nanomolar-to-micromolar range. Also isolated were the known compounds methylkakuol (5), '3,5-dimethoxytoluene', safrole, asaricin, methyleugenol, and (-)-asarinin, which were found to be inactive in the above assay. Among the ten known isolates, compounds 1, 2, and 5 were found for the first time in this plant.  相似文献   

4.
A methanol extract of the flowers of Mammea siamensis (Calophyllaceae) was found to inhibit nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells. From the extract, two new geranylated coumarins, mammeasins A (1) and B (2), were isolated together with 17 known compounds including 15 coumarins. The structures of 1 and 2 were determined on the basis of their spectroscopic properties as well as of their chemical evidence. Among the isolates, 1 (IC(50)=1.8μM), 2 (6.4μM), surangins B (3, 5.0μM), C (4, 6.8μM), and D (5, 6.2μM), kayeassamins E (7, 6.1μM), F (8, 6.0μM), and G (9, 0.8μM), mammea A/AD (11, 1.3μM), and mammea E/BB (16, 7.9μM) showed NO production inhibitory activity. Compounds 1, 9, and 11 were found to inhibit induction of inducible nitric oxide synthase (iNOS). With regard to mechanism of action of these active constituents (1, 9, and 11), suppression of STAT1 activation is suggested to be mainly involved in their suppression of iNOS induction.  相似文献   

5.
In a preliminary article, we reported a series of 4,5-dihydro-1H-pyrazole derivatives as neuronal nitric oxide synthase (nNOS) inhibitors. Here we present the data about the inhibition of inducible nitric oxide synthase (iNOS) of these compounds. In general, we can confirm that these pyrazoles are nNOS selective inhibitors. In addition, taking these compounds as a reference, we have designed and synthesized a series of new derivatives by modification of the heterocycle in 1-position, and by introduction of electron-donating or electron-withdrawing substituents in the aromatic ring. These derivatives have been evaluated as nNOS and iNOS inhibitors in order to identify new compounds with improved activity and selectivity. Compound 3r, with three methoxy electron-donating groups in the phenyl moiety, is the most potent nNOS inhibitor, showing good selectivity nNOS/iNOS.  相似文献   

6.
Some chalcones exert potent anti-inflammatory activities. 2',5'-Dialkoxychalcones and 2',5'-dihydroxy-4-chloro-dihydrochalcone inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-activated N9 microglial cells and in LPS-activated RAW 264.7 macrophage-like cells have been demonstrated in our previous reports. These compounds also suppressed the inducible NO synthase (iNOS) expression and cyclooxygenase-2 (COX-2) activity in RAW 264.7 cells. In an effort to continually develop potent anti-inflammatory agent, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and then evaluated their inhibitory effects on the activation of mast cells, neutrophils, macrophages, and microglial cells. Most of the 2',5'-dihydroxychaclone derivatives exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Some chalcones showed potent inhibitory effects on superoxide anion generation in rat neutrophils in response to fMLP/CB. Compounds 1 and 5 exhibited potent inhibitory effects on NO production in macrophages and microglial cells. Compound 11 showed inhibitory effect on NO production and iNOS protein expression in RAW 264.7 cells. The present results demonstrated that most of the 2',5'-dihydroxychaclones have anti-inflammatory effects. The potent inhibitory effect of 2',5'-dihydroxy-dihydrochaclones on NO production in LPS-activated macrophage, probably through the suppression of iNOS protein expression, is proposed to be useful for the relief of septic shock.  相似文献   

7.
In the present study, various 1-substituted and 1,3-disubstituted β-carboline derivatives were synthesized by a modified single-step Pictet-Spengler reaction. The compounds were examined for cytotoxicity and anti-inflammatory activity, as measured by the inhibition of prostaglandin E(2) (PGE(2)) production and nitric oxide (NO) production. While only two compounds (28 and 31) showed marginal cytotoxicity against four human cancer cell lines, most of the tested compounds exhibited potent inhibitory activity of both NO and PGE(2) production. Moreover, compounds 6 and 16 significantly reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2), suggesting that β-carboline analogs can inhibit NO and PGE(2) production at the translational level. In addition, several of the β-carboline derivatives (1, 2, 4-8, 11, 13, 22, 25, 27, 31, and 41-43) displayed significant inhibitory activity of superoxide anion (O(2)(·-)) generation or elastase release compared to the reference compound, with 6 being the most potent. N-Formyl-L-methionyl-phenylalanine (FMLP)-induced phosphorylation of c-JunN-terminal kinase (JNK) and protein kinase B (AKT) were also inhibited by 6, suggesting that it suppresses human neutrophil functions by inhibiting the activation of JNK and AKT signaling pathways. Therefore, the synthetic 1-benzoyl-3-carboxy β-carboline analogs may have great potential to be developed as anti-inflammatory agents.  相似文献   

8.
Investigation of the roots of Myrica nana afforded five new cyclic diarylheptanoids, myricananins A-E (1-5), two new artifacts of myricananins A and B (6-7), and four known compounds, 12-hydroxymyricanone (8), alnusonol (9), myricatomentogenin (10), and actinidione (11). The structures of these new compounds were established by detailed spectroscopic methods. The stereochemistry of compounds 1 and 2 were determined by single-crystal X-ray diffraction. In exception of compounds 2, 6 and 10, all the other compounds were examined for their inhibitory effects on nitric oxide production in lipopolysaccharides-activated macrophages. Compounds 1, 3, 7, 8 and 9 inhibited the release of nitric oxide with IC(50) values of 45.32, 63.51, 52.81, 30.19 and 46.18muM, respectively. Furthermore, compound 1 was found to inhibit the expression of inducible nitric oxide synthase.  相似文献   

9.
5-Substituted 7-amino-4,5-tetrahydrothieno[2,3-c]pyridines and 6-substituted 4-amino-6,7-dihydrothieno[3,2-c]pyridines were shown to be exceptionally potent inhibitors of inducible and neuronal nitric oxide synthase. Selectivity and potency could be modulated by variation of the 5- or 6-substituent. Compound 3e showed potent in vivo inhibition of iNOS.  相似文献   

10.
We tested a series of 11 new aminothiopyrimidones on the activity of inducible nitric oxide synthase (iNOS) and prostaglandin G/H synthase-1 and 2 (COX-1 and COX-2) in the whole human blood and monocyte-macrophage J774 cell line. To induce COX-2 and iNOS, blood samples and J774 cells were stimulated with bacterial lipopolysaccharide (LPS) in the absence or presence of the test compounds. After incubation, the plasma and the supernatants of culture media were collected for the measurement of TxB2 and PGE2 by a specific enzyme-immunoassay and determination of nitrite by a colorimetric assay. Several phenylthieno derivatives of substituted pyrimidone inhibited formation of both COX-2 and iNOS derived products with one of the compounds (compound 11, N-[2-[(2,4-dinitrophenyl)thio]-4-oxo-6-phenylthieno[2,3-d]pyrimidin-3(4H)-y]methanesulfonamide) showing a complete inhibition of LPS-stimulated formation of NO and PGE2.  相似文献   

11.
Chamaecyparis formaosensis, commonly known as Taiwan red cypress, is native to Taiwan and grows at elevations of 1500-2150 m in Taiwan's central mountains. Many compounds have been identified from different pasts of C. formosensis, but up until now, little research has been done on the link between the constituents of C. formosensis and its bioactivities. In this study, we found that an ethyl acetate fraction (EA) of methonal extract of C. formosecsis, strongly inhibited LPS-mediated nitric oxide (NO) production in Raw 264.7 cells. The EA was further divided into 25 subfractions (EA1-EA25) by column chromatography. EA12 possessed the strongest NO production inhibition activity (IC(50) was 4.1 microg/mL). At a dosage of 20 microg/mL, EA12 completely inhibited NO production and the mRNA expression of inducible nitric oxide synthase (iNOS) in LPS-stimulated macrophage RAW264.7 cells. Bioactivity-guided chromatographic fractionation and metabolite profiling coupled with spectroscopic analyses, including (1)H-NMR, (13)C-NMR analyses, identified six compounds: vanillin (1), 4-hydroxybenzaldehyde (2), trans-hinokiresinol (3), taiwanin E (4), 4alpha-hydroxyeudesm- 11-en-12-al (5), savinin (6). All of these six compounds were the first identified and reported from this tree species. Compounds (1), (3) and (5) demonstrated significant NO inhibition effect through reduction of NO production in activated RAW 264.7 cells due to the suppression of iNOS gene expression: compounds that can selectively inhibit undesirable expression of iNOS are important as they may serve as potential cancer chemopreventatives. This study suggests that C. formosensis may have potential for use as a natural resource for human health care.  相似文献   

12.
Marine derived fungus has gained increasing ground in the discovery of novel lead compounds with potent biological activities including anti-inflammation. Here, we first report the characterization of one new sorbicillinoid ( 1 ) and fourteen known compounds ( 2 – 15 ) from the ethyl acetate (AcOEt) extract of a cultured mangrove derived fungus Penicillium sp. DM815 by UV, IR, HR ESI-Q-TOF MS, and NMR spectra. We then evaluated the anti-inflammatory effects of eleven sorbicillinoids ( 1 – 11 ) using cultured macrophage RAW264.7 cells. The results show that compound 9 , and to a lesser degree compound 5 , significantly inhibited the Gram-negative bacteria lipopolysaccharide (LPS)-induced upregulation of the inducible nitric oxide synthase (iNOS). Consistently, compounds 5 and 9 significantly reduced the level of nitric oxide (NO), the product of iNOS, induced by LPS. We further show that these two compounds dose-dependently inhibited LPS-triggered iNOS expression and NO production, but had no effect on proliferation of RAW264.7 cells in the presence of LPS. In conclusion, our study identifies novel and known sorbicillinoids as potent anti-inflammatory agents, holding the promise of developing novel anti-inflammation treatment in the future.  相似文献   

13.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

14.
Four series of new bipyrazoles comprising the N-phenylpyrazole scaffold linked to polysubstituted pyrazoles or to antipyrine moiety through different amide linkages were synthesized. The synthesized compounds were evaluated for their anti-inflammatory and analgesic activities. In vitro COX-1/COX-2 inhibition study revealed that compound 16b possessed the lowest IC50 value against both COX-1 and COX-2. Moreover, the effect of the most promising compounds on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) protein expression in lipopolysaccharide (LPS)-activated rat monocytes was also investigated. The results revealed that some of the synthesized compounds showed anti-inflammatory and/or analgesic activity with less ulcerogenic potential than the reference drug diclofenac sodium and are well tolerated by experimental animals. Moreover, they significantly inhibited iNOS and COX-2 protein expression induced by LPS stimulation. Compounds 16b and 18 were proved to display anti-inflammatory activity superior to diclofenac sodium and analgesic activity equivalent to it with minimal ulcerogenic potential.  相似文献   

15.
Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of inducible nitric oxide synthesis might contribute to the anti-inflammatory activities of azathioprine.  相似文献   

16.
This study was designed to compare the effects of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (PAPC) and native PAPC on the inducible nitric oxide synthase (iNOS) in the macrophage cell line RAW 264.7. Macrophages stimulated by bacterial lipopolysaccharide (1 microg/ml) were incubated with increasing amounts of native or oxidized PAPC (oxPAPC, 10-20 microg/ml). Cells incubated with oxPAPC showed a dose-dependent inhibition of inducible nitric oxide synthesis, as well as reduced iNOS protein expression and mRNA levels. Additionally, chromatin immunoprecipitation assay revealed that oxPAPC reduced the interaction of the active NF-kappaB subunit p65 with the iNOS promoter region when compared to native PAPC.  相似文献   

17.
Inducible nitric oxide synthase (iNOS) has been implicated in various central and peripheral pathophysiological diseases. Our high throughput screening initially identified a weak inhibitor of iNOS, thiocoumarin 13. From this lead, a number of potent derivatives were prepared that demonstrate favorable potency, selectivity and kinetics. Compound 30 has an IC50 of 60 nM for mouse iNOS and 185-fold and 9-fold selectivity for bovine eNOS and rat nNOS, respectively. In cellular assays for iNOS, this compound has micromolar potency. Furthermore, two compounds (16 and 30) demonstrate a reasonable pharmacokinetic profile in rodents. The synthesis, SAR, and biological activity of this novel class of compounds is described.  相似文献   

18.
19.
New thiophene and annulated thiophene pyrazole hybrids were synthesized and screened for their in vitro COX-1/COX-2 enzymatic inhibition and in vivo anti-inflammatory activities. All compounds were more COX-2 selective inhibitors than COX-1 with compound 13 exhibiting the highest COX-2 selectivity index. Compounds 3, 6a, 9 and 11 were the most promising in the acute anti-inflammatory assay while compounds 3, 5, 6a, 6c, 9, 10, 11 and 13 exerted promising anti-inflammatory activity in the sub-acute anti-inflammatory assay. Compounds 3, 6a, 6c, 9, 10 and 11 were evaluated for their ED50 values and were more potent than diclofenac sodium while compounds 6a, 6c and 9 were of greater potency than celecoxib with compound 6a being the most potent showing ED50 = 0.033 mmol/kg. These compounds were non-toxic and proved to be gastrointestinal safe compared to indomethacin, diclofenac sodium and celecoxib. Docking studies into COX-2 active site (PDB code 3LN1) revealed that compounds 3, 6a, 6c, 9, 10, 11 and 13 had binding modes and energies comparable to that of celecoxib. Compounds 3, 9, 10 and 11 complied with Lipinski’s RO5 while compounds 6a and 6c showed one violation whereas compound 13 deviated by 2 violations. Compounds 6a, 6c and 13 showed 100% plasma protein binding (PPB) and showed no aqueous solubility while compounds 3, 10 and 11 demonstrated the best drug likeness model scores. Therefore, the thiophene analog 3 and the thienopyrimidine derivatives 10 and 11 are promising anti-inflammatory candidates that exert moderate selective COX-2 inhibition with acceptable physicochemical properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号