首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The L15 region of Escherichia coli RNase P RNA forms two Watson-Crick base pairs with precursor tRNA 3'-CCA termini (G292-C75 and G293-C74). Here, we analyzed the phenotypes associated with disruption of the G292-C75 or G293-C74 pair in vivo. Mutant RNase P RNA alleles (rnpBC292 and rnpBC293) caused severe growth defects in the E. coli rnpB mutant strain DW2 and abolished growth in the newly constructed mutant strain BW, in which chromosomal rnpB expression strictly depended on the presence of arabinose. An isosteric C293-G74 base pair, but not a C292-G75 pair, fully restored catalytic performance in vivo, as shown for processing of precursor 4.5S RNA. This demonstrates that the base identity of G292, but not G293, contributes to the catalytic process in vivo. Activity assays with mutant RNase P holoenzymes assembled in vivo or in vitro revealed that the C292/293 mutations cause a severe functional defect at low Mg2+ concentrations (2 mM), which we infer to be on the level of catalytically important Mg2+ recruitment. At 4.5 mM Mg2+, activity of mutant relative to the wild-type holoenzyme, was decreased only about twofold, but 13- to 24-fold at 2 mM Mg2+. Moreover, our findings make it unlikely that the C292/293 phenotypes include significant contributions from defects in protein binding, substrate affinity, or RNA degradation. However, native PAGE experiments revealed nonidentical RNA folding equilibria for the wild-type versus mutant RNase P RNAs, in a buffer- and preincubation-dependent manner. Thus, we cannot exclude that altered folding of the mutant RNAs may have also contributed to their in vivo defect.  相似文献   

2.
Phylogenetic covariation of the nucleotides corresponding to the bases at positions 121 and 236 in Escherichia coli RNase P RNA (M1 RNA) has been demonstrated in eubacterial RNase P RNAs. To investigate whether the nucleotides at these positions interact in M1 RNA we introduced base substitutions at either or at both of these positions. Single base substitutions at 121 or at 236 resulted in M1 RNA molecules which did not complement the temperature-sensitive phenotype associated with rnpA49 in vivo whereas wild-type M1 RNA or the double mutant M1 RNA, with restored base-pairing between 121 and 236, did. In addition, wild-type and the double mutant M1 RNA were efficiently cleaved by Pb++ between positions 122 and 123 whereas the rate of this cleavage was significantly reduced for the singly mutated M1 RNA variants. From these data we conclude that the nucleotides at positions 121 and 236 in M1 RNA establish a novel long-range tertiary interaction in M1 RNA. Our results also demonstrated that this interaction is not absolutely required for cleavage in vitro, however, a disruption resulted in a reduction in cleavage efficiency (kcat/Km), both in the absence and presence of C5.  相似文献   

3.
4.
Base pairing between Escherichia coli RNase P RNA and its substrate.   总被引:14,自引:2,他引:12       下载免费PDF全文
Base pairing between the substrate and the ribozyme has previously been shown to be essential for catalytic activity of most ribozymes, but not for RNase P RNA. By using compensatory mutations we have demonstrated the importance of Watson-Crick complementarity between two well-conserved residues in Escherichia coli RNase P RNA (M1 RNA), G292 and G293, and two residues in the substrate, +74C and +75C (the first and second C residues in CCA). We suggest that these nucleotides base pair (G292/+75C and G293/+74C) in the ribozyme-substrate complex and as a consequence the amino acid acceptor stem of the precursor is partly unfolded. Thus, a function of M1 RNA is to anchor the substrate through this base pairing, thereby exposing the cleavage site such that cleavage is accomplished at the correct position. Our data also suggest possible base pairing between U294 in M1 RNA and the discriminator base at position +73 of the precursor. Our findings are also discussed in terms of evolution.  相似文献   

5.
6.
7.
8.
We demonstrate, for the first time, catalysis by Escherichia coli ribonuclease P (RNase P) RNA with Zn2+ as the sole divalent metal ion cofactor in the presence of ammonium, but not sodium or potassium salts. Hill analysis suggests a role for two or more Zn2+ ions in catalysis. Whereas Zn2+ destabilizes substrate ground state binding to an extent that precludes reliable Kd determination, Co(NH3)6(3+) and Sr2+ in particular, both unable to support catalysis by themselves, promote high-substrate affinity. Zn2+ and Co(NH3)6(3+) substantially reduce the fraction of precursor tRNA molecules capable of binding to RNase P RNA. Stimulating and inhibitory effects of Sr2+ on the ribozyme reaction with Zn2+ as cofactor could be rationalized by a model involving two Sr2+ ions (or two classes of Sr2+ ions). Both ions improve substrate affinity in a cooperative manner, but one of the two inhibits substrate conversion in a non-competitive mode with respect to the substrate and the Zn2+. A single 2'-fluoro modification at nt -1 of the substrate substantially weakened the inhibitory effect of Sr2+. Our results demonstrate that the studies on RNase P RNA with metal cofactors other than Mg2+ entail complex effects on structural equilibria of ribozyme and substrate RNAs as well as E*S formation apart from the catalytic performance.  相似文献   

9.
Affinity chromatography based on the complex formation of the modified nucleoside Q with boronic acid has been applied to the isolation of specific tRNA precursors containing this modified nucleoside. When [32P]RNA isolated from an Escherichia coli strain containing a thermolabile ribonuclease P was chromatographed on dihydroxyboryl-substituted cellulose, the precursors for asparagine, aspartate, histidine, and tyrosine tRNA were specifically retained. All precursors were monomeric. The nucleotide sequences of four asparagine tRNA precursors were determined.  相似文献   

10.
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20–Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.  相似文献   

11.
We suggested previously that a purine at the discriminator base position in a tRNA precursor interacts with the well-conserved U294 in M1 RNA, the catalytic subunit of Escherichia coli RNase P. Here we investigated this interaction and its influence on the kinetics of cleavage as well as on cleavage site selection. The discriminator base in precursors to tRNA(Tyr)Su3 and tRNA(Phe) was changed from A to C and cleavage kinetics were studied by wild-type M1 RNA and a mutant M1 RNA carrying the compensatory substitution of a U to a G at position 294 in M1 RNA. Our data suggest that the discriminator base interacts with the residue at position 294 in M1 RNA. Although product release is a rate-limiting step both in the absence and in the presence of this interaction, its presence results in a significant reduction in the rate of product release. In addition, we studied cleavage site selection on various tRNA(His) precursor derivatives. These precursors carry a C at the discriminator base position. The results showed that the mutant M1 RNA harboring a G at position 294 miscleaved a wild-type tRNA(His) precursor and a tRNA(His) precursor carrying an inosine at the cleavage site. The combined data suggest a functional interaction between the discriminator base and the well-conserved U294 in M1 RNA. This interaction is suggested to play an important role in determining the rate of product release during multiple turnover cleavage of tRNA precursors by M1 RNA as well as in cleavage site selection.  相似文献   

12.
The kinetic constants for cleavage of the tRNA(Tyr)Su3 precursor by the M1 RNA of E. coli RNase P were determined in the absence and presence of the C5 protein under single and multiple (steady state) turnover conditions. The rate constant of cleavage in the reaction catalyzed by M1 RNA alone was 5 times higher in single turnover than in multiple turnovers, suggesting that a rate-limiting step is product release. Cleavage by M1 RNA alone and by the holoenzyme under identical buffer conditions demonstrated that C5 facilitated product release. Addition of different product-like molecules under single turnover reaction conditions inhibited cleavage both in the absence and presence of C5. In the presence of C5, the Ki value for matured tRNA was approximately 20 times higher than in its absence, suggesting that C5 also reduces the interaction between the 5'-matured tRNA and the enzyme. In a growing cell the number of tRNA molecules is approximately 1000 times higher than the number of RNase P molecules. A 100-fold excess of matured tRNA over enzyme clearly inhibited cleavage in vitro. We discuss the possibility that RNase P is involved in the regulation of tRNA expression under certain growth conditions.  相似文献   

13.
M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex.  相似文献   

14.
In Kohara's library derived from Escherichia coli K-12 W3110 (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987), multiple copies of chromosomal sequence are found at 68 and at 64 to 65 min (M. Umeda and E. Ohtsubo, J. Mol. Biol. 213:229-237, 1990). We have determined that the rnpB gene (previously mapped at 70 min [B. J. Bachmann, Microbiol. Rev. 54:130-197, 1990]) is located within these segments of repeated sequences as five separate copies, together with tdcA, B, C, and R (mapped at 68 min [Bachmann, 1990]) and six unidentified open reading frames. Since close linkage of rnpB and tdc is found in various strains of E. coli K-12, the rnpB gene should be mapped at 68 min rather than 70 min.  相似文献   

15.
We recently showed that RNase III can process a small stable RNA, precursor 10Sa RNA, that accumulates in an rne (RNase E) strain at non-permissive temperatures. Precursor 10Sa (p10Sa) RNA is processed to 10Sa RNA in two steps, the first step is catalyzed by RNase III in the presence of Mn2+ but not Mg2+. It was shown that RNase III cosediments with membrane preparation from wild type as well as RNase III overexpressing cells. However, the possibility of membrane preparation contamination with ribosomes could not be ruled out. Here we show that RNase III, E and P are not associated with ribosomes. E. coli cells were opened either by alumina grinding or by sonication and fractionated into cytosolic and pellet fractions. The characterization of membrane preparations was done by assaying NADH oxidase, a bona fide membrane enzyme. Ribosomes prepared by alumina grinding were found to be contaminated with small fragments of membrane which contained RNase III activity. RNase III and NADH oxidase activities were present in the ribosomal preparations which could be solubilized by reagents that dissolve the inner membrane. Isopycnic sucrose gradient centrifugation of the membrane and ribosomal preparations also confirmed that RNase III fractionated with the inner membrane. Similarly RNase P activity was found in the corresponding fractions when isopycnic centrifugation of membrane and ribosome preparations was carried out. RNase E activity was also found to be present mostly in the post-ribosomal supernatant. These findings show that RNase III, E and P are not ribosomal enzymes.  相似文献   

16.
We have studied an interaction, the "73/294-interaction", between residues 294 in M1 RNA (the catalytic subunit of Escherichia coli RNase P) and +73 in the tRNA precursor substrate. The 73/294-interaction is part of the "RCCA-RNase P RNA interaction", which anchors the 3' R(+73)CCA-motif of the substrate to M1 RNA (interacting residues underlined). Considering that in a large fraction of tRNA precursors residue +73 is base-paired to nucleotide -1 immediately 5' of the cleavage site, formation of the 73/294-interaction results in exposure of the cleavage site. We show that the nature/orientation of the 73/294-interaction is important for cleavage site recognition and cleavage efficiency. Our data further suggest that this interaction is part of a metal ion-binding site and that specific chemical groups are likely to act as ligands in binding of Mg(2+) or other divalent cations important for function. We argue that this Mg(2+) is involved in metal ion cooperativity in M1 RNA-mediated cleavage. Moreover, we suggest that the 73/294-interaction operates in concert with displacement of residue -1 in the substrate to ensure efficient and correct cleavage. The possibility that the residue at -1 binds to a specific binding surface/pocket in M1 RNA is discussed. Our data finally rationalize why the preferred residue at position 294 in M1 RNA is U.  相似文献   

17.
We have studied the structure and divalent metal ion binding of a domain of the ribozyme RNase P RNA that is involved in base pairing with its substrate. Our data suggest that the folding of this internal loop, the P15-loop, is similar irrespective of whether it is part of the full-length ribozyme or part of a model RNA molecule. We also conclude that this element constitutes an autonomous divalent metal ion binding domain of RNase P RNA and our data suggest that certain specific chemical groups within the P15-loop participate in coordination of divalent metal ions. Substitutions of the Sp- and Rp-oxygens with sulfur at a specific position in this loop result in a 2.5-5-fold less active ribozyme, suggesting that Mg2+ binding at this position contributes to function. Our findings strengthen the concept that small RNA building blocks remain basically unchanged when removed from their structural context and thus can be used as models for studies of their potential function and structure within native RNA molecules.  相似文献   

18.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

19.
A region upstream from the Escherichia coli rrnB P1 promoter, the upstream activator region (UAR), increases the activity of the promoter in vivo and the rate of association with RNA polymerase (E sigma 70) in vitro in the presence of the two initiating nucleotides. We have used four types of chemical and enzymatic footprinting probes to determine whether rrnB P1-E sigma 70 complexes formed in the presence of the initiating nucleotides (RPinit) differ from typical open complexes (RPo) formed in the absence of the initiating nucleotides and to examine the structural differences between rrnB P1 complexes containing the UAR and those lacking the UAR. We find that the rrnB P1-RPinit complex closely resembles open complexes formed at other E sigma 70 promoters, indicating that the formation of the first phosphodiester bond does not result in a major rearrangement of the promoter-RNA polymerase complex. An unusual potassium permanganate modification at position -18 in both RPo and RPinit indicates the possible presence of a subtle difference in the -10, -35 spacer structure compared to some other E. coli promoters. We show that the E sigma 70-rrnB P1 complex formed with the promoter containing the UAR has DNase I and hydroxyl radical cleavage patterns in the -50 region different from those observed with the same promoter lacking the UAR. These results are interpreted to indicate that E sigma 70 may interact with a region further upstream from that contacted by RNA polymerase bound at most other promoters and/or that unusual structural properties of this region are induced by bound E sigma 70.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号