首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper reports that the D-loop sequence of cellular mammalian ribosomal 5S RNAs is a natural leadzyme that specifically binds and cleaves in trans other RNA molecules in the presence of lead. The D-loops of these 5S rRNAs are similar in sequence to the active site of the leadzyme derived from tRNA(Phe), which cleaves a single bond in cis. We have devised a 12 nt model substrate based on the leadzyme sequence cleaved in trans by a 12 nt RNA molecule containing of the D-loop sequence. The model reaction occurs only at the appropriate concentration of lead and enzyme/substrate stoichiometry. The native 5S rRNA carries the same cleavage activity, although with different optimal lead concentration and stoichiometry. On the other hand, the isolated D-loop does not serve as a substrate when incubated with an RNA molecule with the potential to base pair with it and form the same internal loop (the bubble) present in the leadzyme-substrate complex. We show that the leadzyme cuts C-G, but not G-G or U-G linkages. The 5S rRNA leadzyme appears to have the shortest asymmetric pentanucleotide purine-rich loop flanked by two short double stranded RNAs. The leadzyme activity of native 5S rRNA may be an important aspect of lead toxicity in living cells. Because the leadzyme motif has been found in natural RNA species, its activity can be expressed in vivo even at a very low lead concentrations, of lead leading to the inactivation of other cellular RNAs. This might be one of the ways in which lead poisoning manifests itself at the molecular level. Lead toxicity is based not only on its binding to calcium and zinc binding proteins (such as Zn-fingers) and random hydrolysis of nucleic acids, but also, and most importantly, on the induction of the hydrolytic properties of RNA (RNA catalysis).  相似文献   

3.
J Ko  Y Lee  I Park  B Cho 《FEBS letters》2001,508(3):300-304
To identify RNA motifs interacting with 5S rRNA, a systematic evolution of ligands by exponential enrichment experiment was applied. Some of the resulting RNA aptamers contained a consensus sequence similar to the sequence in the loop region of helix 89 of 23S rRNA. We show that the synthetic helix 89 RNA motif indeed interacted with 5S rRNA and that the region around loop B of 5S rRNA was involved in this interaction. These results suggest the presence of a novel RNA-RNA interaction between 23S rRNA and 5S rRNA which may play an important role in the ribosome function.  相似文献   

4.
Eukaryotic 5S rRNA hybridizes specifically with 18S rRNA in vitro to form a stable intermolecular RNA:RNA hybrid. We have used 5S rRNA/18S rRNA fragment hybridization studies coupled with ribonuclease digestion and primer extension/chain termination analysis of 5S rRNA:18S rRNA hybrids to more completely map those mouse 5S rRNA and 18S rRNA sequences responsible for duplex formation. Fragment hybridization analysis has defined a 5'-terminal region of 5S rRNA (nucleotides 6-27) which base-pairs with two independent sequences in 18S rRNA designated Regions 1 (nucleotides 1157-1180) and 2 (nucleotides 1324-1339). Ribonuclease digestion of isolated 5S rRNA:18S rRNA hybrids with both single-strand- and double-strand-specific nucleases supports the involvement of this 5'-terminal 5S rRNA sequence in 18S rRNA hybridization. Primer extension/chain termination analysis of isolated 5S rRNA:18S rRNA hybrids confirms the base-pairing of 5S rRNA to the designated Regions 1 and 2 of 18S rRNA. Using these results, 5S rRNA:18S rRNA intermolecular hybrid structures are proposed. Comparative sequence analysis revealed the conservation of these hybrid structures in higher eukaryotes and the same but smaller core hybrid structures in lower eukaryotes and prokaryotes. This suggests that the 5S rRNA:16S/18S rRNA hybrids have been conserved in evolution for ribosome function.  相似文献   

5.
6.
5S rRNA Data Bank.   总被引:3,自引:3,他引:3       下载免费PDF全文
In this paper we present the updated version of the compilation of 5S rRNA and 5S rDNA nucleotide sequences. It contains 1622 primary structures of 5S rRNAs and 5S rRNA genes from 888 species. These include 58 archaeal, 427 eubacterial, 34 plastid, nine mitochondrial and 1094 eukaryotic DNA or RNA nucleotide sequences. The sequence entries are divided according to the taxonomic position of the organisms. All individual sequences deposited in the 5S rRNA Database can be retrieved using the WWW-based, taxonomic browser at http://rose.man.poznan.pl/5SData/5SRNA.html++ + or http://www.chemie. fu-berlin.de/fb_chemie/agerdmann/5S_rRNA.html . The files with complete sets of data as well as sequence alignments are available via anonymous ftp.  相似文献   

7.
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in all organisms. It is composed of two-subunit, ribonucleoprotein particles that translate the genetic material into an encoded polypeptides. The small subunit is the site of codon-anticodon interaction between the messenger RNA (mRNA) and transfer RNA (tRNA) substrates, and the large subunit catalyses peptide bond formation. The peptidyltransferase activity is fulfilled by 23S rRNA, which means that ribosome is a ribozyme. 5S rRNA is a conserved component of the large ribosomal subunit that is thought to enhance protein synthesis by stabilizing ribosome structure. This paper shortly summarises new results obtained on the structure and function of 5S rRNA.  相似文献   

8.
RRP5 is required for formation of both 18S and 5.8S rRNA in yeast.   总被引:17,自引:1,他引:16       下载免费PDF全文
J Venema  D Tollervey 《The EMBO journal》1996,15(20):5701-5714
Three of the four eukaryotic ribosomal RNA molecules (18S, 5.8S and 25-28S) are synthesized as a single precursor which is subsequently processed into the mature rRNAs by a complex series of cleavage and modification reactions. In the yeast Saccharomyces cerevisiae, the early pre-rRNA cleavages at sites A0, A1 and A2, required for the synthesis of 18S rRNA, are inhibited in strains lacking RNA or protein components of the U3, U14, snR10 and snR30 small nucleolar ribonucleoproteins (snoRNPs). The subsequent cleavage at site A3, required for formation of the major, short form of 5.8S rRNA, is carried out by another ribonucleoprotein, RNase MRP. A screen for mutations showing synthetic lethality with deletion of the non-essential snoRNA, snR10, identified a novel gene, RRP5, which is essential for viability and encodes a 193 kDa nucleolar protein. Genetic depletion of Rrp5p inhibits the synthesis of 18S rRNA and, unexpectedly, also of the major short form of 5.8S rRNA. Pre-rRNA processing is concomitantly impaired at sites A0, A1, A2 and A3. This distinctive phenotype makes Rrp5p the first cellular component simultaneously required for the snoRNP-dependent cleavage at sites A0, A1 and A2 and the RNase MRP-dependent cleavage at A3 and provides evidence for a close interconnection between these processing events. Putative RRP5 homologues from Caenorhabditis elegans and humans were also identified, suggesting that the critical function of Rrp5p is evolutionarily conserved.  相似文献   

9.
5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.  相似文献   

10.
Reticulocyte lysates contain ribosome-bound and free populations of 5S RNA. The free population is sensitive to nuclease cleavage in the internal loop B, at the phosphodiester bond connecting nucleotides A54 and A55. Similar cleavage sites were detected in 5S rRNA in 60S subunits and 80S ribosomes. However, 5S rRNA in reticulocyte polysomes is insensitive to cleavage unless ribosomes are salt-washed. This suggests that a translational factor protects the backbone surrounding A54 from cleavage in polysomes. Upon nuclease treatment of mouse 60S subunits or reticulocyte lysates a small population of ribosomes released its 5S rRNA together with ribosomal protein L5. Furthermore, rRNA sequences from 5.8S, 28S and 18S rRNA were released. In 18S rRNA the sequences mainly originate from the 630 loop and stem (helix 18) in the 5' domain, whereas in 28S rRNA a majority of fragments is derived from helices 47 and 81 in domains III and V, respectively. We speculate that this type of rRNA-fragmentation may mimic a ribosome degradation pathway.  相似文献   

11.
Characterization of human 5S rRNA genes.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

12.
The chemical modification of adenine residues in mouse 5S rRNA with monoperphthalate was carried out to investigate the higher ordered structure of 5S rRNA. The adenine residues at positions 11, 22 (or/and 23), 49 (or/and 50), 54 (or/and 55), 77, 83, 88, 90 and 100 (or/and 101) were modified. This result further confirmed the secondary structure of 5S rRNA constituted of 5 helices and 5 loops postulated by other chemical modifications.  相似文献   

13.
14.
Summary In order to study the organization of the ribosomal RNA genes of Mycoplasma hyopneumoniae the rRNA genes were cloned in phage vectors EMBL3 and EMBL4. By subcloning the restriction fragments into various plasmids and analysing the resulting clones by Southern and Northern blot hybridization, a restriction map of the rRNA genes was generated and the organization of the rRNA genes was determined. The results show that the genes for the 16S and 23S rRNAs are closely spaced and occur only once in the genome, whereas the 5S rRNA gene is separated from the other two genes by more than 4 kb.  相似文献   

15.
We report on the construction of a novel strain of E. coli that can be useful for studies on the structure/function relationship of 5S rRNAs. The bacterial strain is deficient in six of the eight naturally occurring 5S rRNA genes (operons B, D, H, G, E) and demonstrates a greatly reduced growth rate that can be compensated by the plasmid-encoded expression of 5S rRNA. The relatively large difference in growth rate between compensated and non-compensated mutants provides the basis for a quick and simple assaying system for both the evaluation and mass screening of divergent 5S rRNA sequences for function. We describe the construction of the 5S rRNA deletion mutant BDHGE and characterize the usefulness and limitations of the system for evaluating structure/function relationships of 5S rRNA sequence. Received: 20 August 2000 / Accepted: 2 January 2001  相似文献   

16.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.  相似文献   

17.
18.
19.
A novel 5S RNA-protein (RNP) complex in human and mouse cells has been analyzed using patient autoantibodies. The RNP is small (approximately 7S) and contains most of the nonribosome-associated 5S RNA molecules in HeLa cells. The 5S RNA in the particle is matured at its 3' end, consistent with the results of in vivo pulse-chase experiments which indicate that this RNP represents a later step in 5S biogenesis than a previously described 5S*/La protein complex. The protein moiety of the 5S RNP has been identified as ribosomal protein L5, which is known to be released from ribosomes in a complex with 5S after various treatments of the 60S subunit. Indirect immunofluorescence indicates that the L5/5S complex is concentrated in the nucleolus. L5 may therefore play a role in delivering 5S rRNA to the nucleolus for assembly into ribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号