首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine whether common allelic variation at the vitamin D receptor locus is related to bone mineral density and postmenopausal bone loss. DESIGN: Cross sectional and longitudinal population study. SETTING: Outpatient clinic in research centre. SUBJECTS: 599 healthy women aged 27 to 72 and 125 women with low bone mass aged 55-77 had bone mineral density measured once in the cross sectional study. 136 women aged 45-54 were followed up for 18 years in the longitudinal study. MAIN OUTCOME MEASURES: Bone mineral density measured at the lumbar spine, hip, and forearm and rate of bone loss at different times over 18 years in relation to vitamin D receptor genotype as defined by the endonucleases ApaI, EsmI, and TaqI. RESULTS: Vitamin D receptor genotype was not related to bone mineral density at any site. The maximum difference between homozygotes was 1.3% (P = 0.33, n = 723). Women with low bone mineral density had almost the same genotype frequencies as the women with normal bone mineral densities. Vitamin D receptor genotype was not related to early postmenopausal bone loss from age 51 to 53 (mean (SD) total loss at the lower forearm -3.6% (3.6%)), late postmenopausal bone loss from age 63 to 69 (at the hip-6.2% (8.7%)), or to long term postmenopausal loss from age 51 to 69 (at the lower forearm-24.5% (11.4%)). CONCLUSION: Common allelic variation at the vitamin D receptor locus as defined by the endonucleases ApaI, EsmI, and TaqI is related neither to bone mineral density nor to the rate of bone loss in healthy postmenopausal Danish women.  相似文献   

2.
The relationship between vitamin D receptor (VDR) intragenic polymorphisms FokI, BsmI, ApaI and TaqI and bone mineral density (BMD) or biochemical markers of bone remodeling were investigated in 114 Czech postmenopausal women, on the average 62.5+/-8.9 years of age. Restriction fragment length polymorphisms in the VDR gene were assessed by PCR amplification and digestion with restriction enzymes FokI, BsmI, ApaI, and TaqI recognizing polymorphic sites in the VDR locus. Bone mineral density was measured at the lumbar spine and at the hip by dual-energy X-ray absorptiometry (DEXA, g/cm2). After adjusting for age and the body mass index (BMI), subjects with the ff genotype had 9.4% lower BMD at the hip than those with the Ff genotype (p=0.0459, Tukey's test). FF individuals had an intermediate BMD at the hip. A similar pattern of lower lumbar spine BMD was also found in ff individuals, but it did not reach statistical significance. There was no relationship between BsmI, ApaI and TaqI VDR polymorphisms and BMD at any skeletal site. Subjects with Aa (ApaI) genotypes had higher levels of propeptide of type I collagen (PICP) than homozygous AA (p=0.0459, Tukey's test). In FokI, BsmI and TaqI restriction sites the biochemical markers of bone remodeling did not differ by genotype. In addition, no significant difference was observed in VDR genotypic distribution between osteoporotic women and non-osteoporotic controls in the study group. To conclude, the FokI genotype of the vitamin D receptor gene is related to bone mass at the hip in Czech postmenopausal women, whereas the importance of remaining VDR genotypes was not evident.  相似文献   

3.
The genetic difference among individuals partly explains variance in adaptive response to exercise through gene-environment interaction. The aim of this cross-sectional study was to evaluate the role of the vitamin D receptor (VDR) gene polymorphism, which locates at the translation initiation site, in the adaptations of bone to long-term impact loading. The VDR genotypes, as detected by endonuclease Fok I, and bone phenotypes of the lumbar spine and femoral neck were examined in 44 highly trained young male athletes and 44 age-matched nonathletic controls. As a whole, the athletes had a significantly higher bone mineral content resulting from a combination of increased volume and density at both sites than the controls. When the athletes were compared with the controls within each VDR genotype, however, the increased spinal volume was found only in the athletes with the FF but not in those with the Ff genotype("F" for the absence of the endonuclease Fok I restriction site and "f" for its presence). Differences in bone mineral content in the lumbar spine and femoral neck between the controls and the athletes were greater in subjects with FF than those with Ff. Our results suggest a gene-environment interaction in that the bone phenotypes in individuals with FF adapt to impact loading by producing stronger bone structure than those with the Ff do.  相似文献   

4.
薛延  李东  王芊  董兆文 《遗传》2003,25(2):137-140
为探讨北京地区汉族妇女雌激素受体(ER)基因XbaI多态性与骨密度的关系,采用双能X线吸收仪检测腰椎、股骨及前臂骨密度;采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)法,对179例北京地区汉族妇女ER基因XbaI多态性进行分析。北京地区汉族妇女ER基因XX、Xx和xx基因型频率分布为0.302、0.464和0.234,绝经前与绝经后妇女XbaI型基因频率分布有明显差异,绝经后妇女腰椎骨密度(0.836±0.18)g/cm2明显低于绝经前妇女(1.038±0.14);绝经后妇女骨质疏松症的发病率为54%。ER基因XbaI基因型频率分布有明显的种族差异并受绝经影响,ER基因XbaI基因型与骨密度无明显相关性。与体重和BMI有明显相关性。  相似文献   

5.
Data documenting the indirect interaction of vitamin D and bone metabolism via hormonal systems are rare. The authors analysed the predictive role of the vitamin D receptor (VDR) gene for circulating sex steroids and their precursors in postmenopausal women. Using the PCR technique, the polymorphic FokI, ApaI, TaqI and BsmI sites of the VDR gene were determined in relation to serum dehydroepiandrosterone sulphate (DHEAS), androstenedione (AD), testosterone, and estradiol levels. After adjustment to body mass and years since menopause, circulating DHEAS was higher in the Ff genotype than in ff (p < 0.001) and FF genotypes (p < 0.05, ANCOVA followed by least significant difference multiple comparison tests). The Ff genotype also contributed to the highest BMD at the hip (p < 0.01 as compared to ff genotype) and at the spine (p < 0.05). No significant associations were found between ApaI, TaqI and BsmI polymorphisms and serum DHEAS or between FokI, ApaI, TaqI or BsmI and serum androstenedione, testosterone or estradiol. The study shows that the VDR gene predicts synthesis and/or metabolism of sexual steroid preursor DHEA in parallel with bone mineral density (BMD). The results indicate that DHEA production and bone mass share a common genetic control through VDR.  相似文献   

6.
In the present study, we tested the association between the estrogen receptor alpha (ER-alpha) and vitamin D receptor (VDR) genes with bone mineral density (BMD). A total of 649 healthy Chinese women, classified as pre-menopausal (N=388) and post-menopausal (N=261) groups, were genotyped at the ER-alpha PvuII, XbaI, and VDR ApaI sites. BMDs at the lumbar spine (L(1)-L(4)) and total hip were measured by dual-energy X-ray absorptiometry. For the VDR ApaI locus, AA carriers had lower spine BMD than Aa (p=0.02) and aa carriers (p<0.01) in the pre-menopausal group. For the ER-alpha gene, carriers of haplotype px had lower spine BMD than the non-carriers (p=0.03) in the pre-menopausal group. Furthermore, we observed significant interaction between the ER-alpha and VDR genes in the post-menopausal group: with AA genotype (or A allele) at the VDR ApaI locus, pX carriers had higher spine BMD than the non-carriers (p=0.02), and PX carriers had lower hip BMD than the non-carriers (p=0.04). Our data suggest that the ER-alpha and VDR genes may be associated with the BMD variation in Chinese women.  相似文献   

7.
Physical exercise has a favorable impact on bones, but optimum training strategies are still under discussion. In this study, we compared the effect of slow and fast resistance exercises on various osteodensitometric parameters. Fifty-three postmenopausal women were randomly assigned to a strength training (ST) or a power training group (PT). Both groups carried out a progressive resistance training, a gymnastics session, and a home training over a period of 12 mo. During the resistance training, the ST group used slow and the PT group fast movements; otherwise there were no training differences. All subjects were supplemented with Ca and vitamin D. At baseline and after 12 mo, bone mineral density (BMD) was measured at the lumbar spine, proximal femur, and distal forearm by dual-energy X-ray absorptiometry. We also measured anthropometric data and maximum static strength. Frequency and grade of pain were assessed by questionnaire. After 12 mo, significant between-group differences were observed for BMD at the lumbar spine (P < 0.05) and the total hip (P < 0.05). Whereas the PT group maintained BMD at the spine (+0.7 +/- 2.1%, not significant) and the total hip (0.0 +/- 1.7%, not significant), the ST group lost significantly at both sites (spine: -0.9 +/- 1.9%; P < 0.05; total hip: -1.2 +/- 1.5%; P < 0.01). No significant between-group differences were observed for anthropometric data, maximum strength, BMD of the forearm, or frequency and grade of pain. These findings suggest that power training is more effective than strength training in reducing bone loss in postmenopausal women.  相似文献   

8.

Background

Vitamin D insufficiency in children may have long-term skeletal consequences as vitamin D affects calcium absorption, bone mineralization and bone mass attainment.

Methodology/Principal Findings

This school-based study investigated vitamin D status and its association with vitamin D intake and bone health in 195 Finnish children and adolescents (age range 7–19 years). Clinical characteristics, physical activity and dietary vitamin D intake were evaluated. Blood and urine samples were collected for serum 25-hydroxyvitamin D (25-OHD) and other parameters of calcium homeostasis. Bone mineral density (BMD) and body composition were measured with dual-energy X-ray absorptiometry (DXA). Altogether 71% of the subjects were vitamin D insufficient (25-OHD <50 nmol/L). The median 25-OHD was 41 nmol/L for girls and 45 nmol/L for boys, and the respective median vitamin D intakes 9.1 µg/day and 10 µg/day. In regression analysis, after adjusting for relevant factors, 25-OHD concentration explained 5.6% of the variance in lumbar BMD; 25-OHD and exercise together explained 7.6% of the variance in total hip BMD and 17% of the variance in whole body BMD. S-25-OHD was an independent determinant of lumbar spine and whole body BMD and in magnitude surpassed the effects of physical activity.

Conclusions/Significance

Vitamin D insufficiency was common even when vitamin D intake exceeded the recommended daily intake. Vitamin D status was a key determinant of BMD. The findings suggest urgent need to increase vitamin D intake to optimize bone health in children.  相似文献   

9.
Objectives:The aim of this study was to analyze the association of knee OA with bone mineral density (BMD) and vitamin D serum levels in postmenopausal women.Methods:A cross-sectional study including 240 postmenopausal women with knee OA was conducted. Demographic data were recorded along with balance and functionality scores. Knee OA severity was assessed by the radiological Kellgren & Lawrence scale. BMD and T-scores were calculated in hips and lumbar spine. Serum levels of vitamin D were also measured.Results:High BMI (p<0.005), high number of children (p=0.022) and family history of hip fracture (p=0.011) are significantly associated with knee OA severity. Lumbar spine OP is negatively associated with knee OA (p<0.005). A significant difference was detected between vitamin D deficiency and severe knee OA, adjusted for BMD [OR (95%CI); 3.1 (1.6-6.1), p=0.001]. BMD does not affect the relationship of vitamin D levels in relation to OA and vitamin D levels do not affect the relationship of BMD with OA.Conclusions:Low BMD has a protective role against knee OA while vitamin D deficiency contributes significantly to knee OA severity. However, the association between OA and OP is not affected by vitamin D deficiency and the association of OA and vitamin D serum levels is not affected by BMD.  相似文献   

10.
Objectives : A twin‐based comparative study on the genetic influences in metabolic endophenotypes in two populations of substantial ethnic, environmental, and cultural differences was performed. Design and Methods : Data on 11 metabolic phenotypes including anthropometric measures, blood glucose, and lipids levels as well as blood pressure were available from 756 pairs of Danish twins (309 monozygotic and 447 dizygotic twin pairs) with a mean age of 38 years (range: 18‐67) and from 325 pairs of Chinese twins (183 monozygotic and 142 dizygotic twin pairs) with a mean age of 40.5 years (range: 18‐69). Twin modeling was performed on full and nested models with the best fitting models selected. Results : Heritability estimates were compared between Danish and Chinese samples to identify differential genetic influences on each of the phenotypes. Except for hip circumference, all other body measures exhibited similar heritability patterns in the two samples with body weight showing only a slight difference. Higher genetic influences were estimated for fasting blood glucose level in Chinese twins, whereas the Danish twins showed more genetic regulation over most lipids phenotypes. Systolic blood pressure was more genetically controlled in Danish than in Chinese twins. Conclusions : Metabolic endophenotypes show disparity in their genetic determinants in populations under distinct environmental conditions.  相似文献   

11.
《Endocrine practice》2008,14(6):665-671
ObjectiveTo assess the prevalence of osteoporosis in healthy ambulatory postmenopausal Indian women as measured by dual-energy x-ray absorptiometry and to study the dietary calcium intake and vitamin D status and their influence on bone mineral density (BMD).MethodsWe conducted a community-based crosssectional study in a semiurban region. A randomized cluster sampling technique was used. The study cohort consisted of 150 ambulatory postmenopausal women (≥ 50 years old). Dual-energy x-ray absorptiometry for BMD was performed at the lumbar spine and femoral neck. Dietary calcium intake and biochemical variables were assessed.ResultsThe prevalence of osteoporosis was 48% at the lumbar spine, 16.7% at the femoral neck, and 50% at any site. The mean dietary calcium intake was much lower than the recommended intake for this age-group. There was a significant positive correlation between body mass index and BMD at the lumbar spine and the femoral neck (r = 0.4; P = .0001). BMD at the femoral neck was significantly less (mean, 0.657 versus 0.694 g/cm2) in the vitamin D-insufficient study subjects in comparison with the vitamin D-sufficient women (P = .03).ConclusionThe high prevalence of osteoporosis and vitamin D insufficiency in this semiurban group of postmenopausal women in India is a major health concern. Measures such as adequate calcium intake and vitamin D supplementation in women of this age-group may be beneficial. (Endocr Pract. 2008;14:665-671)  相似文献   

12.
Hormone replacement therapy (HRT) modulates the imbalance in bone remodeling, thereby decreasing bone loss. Sex hormones are known to influence rheumatic diseases. The aim of this study was to investigate the effects of HRT on the serum levels of hormones and cytokines regulating bone turnover in 88 postmenopausal women with active rheumatoid arthritis (RA) randomly allocated to receive HRT plus calcium and vitamin D3 or calcium and vitamin D3 alone for 2 years. An increase in estradiol (E2) correlated strongly with improvement of bone mineral density in the hip (P < 0.001) and lumbar spine (P < 0.001). Both baseline levels and changes during the study of IL-6 and erythrocyte sedimentation rate were correlated positively (P < 0.001). HRT for 2 years resulted in an increase of the bone anabolic factor, insulin-like growth factor 1 (IGF-1) (P < 0.05) and a decrease of serum levels of soluble IL-6 receptor (sIL-6R) (P < 0.05), which is known to enhance the biological activity of IL-6, an osteoclast-stimulating and proinflammatory cytokine. Baseline levels of IL-6 and IGF-1 were inversely associated (P < 0.05), and elevation of IGF-1 was connected with decrease in erythrocyte sedimentation rate (P < 0.05) after 2 years. Interestingly, increase in serum levels of E2 was associated with reduction of sIL-6R (P < 0.05) and reduction of sIL-6R was correlated with improved bone mineral density in the lumbar spine (P < 0.05). The latter association was however not significant after adjusting for the effect of E2 (P = 0.075). The influences of IGF-1 and the IL-6/sIL-6R pathways suggest possible mechanisms whereby HRT may exert beneficial effects in RA. However, to confirm this hypothesis future and larger studies are needed.  相似文献   

13.
We set out to determine whether glucocorticoid receptor activity is affected mainly by genetic or environmental factors. The affinity and capacity of the glucocorticoid receptor was measured using dexamethasone binding in whole leukocytes from 53 monozygotic and 48 dizygotic twin pairs. Receptor binding characteristics assayed from twin pairs on the same day were highly correlated within twin pairs irrespective of zygosity. Apparent Kd was negatively correlated with environmental temperature (R2=0.13, P<0.0001) but this did not confound the intra-pair correlation, suggesting a strong familial component independent of zygosity. Receptor binding parameters were not more closely correlated in monozygotic twins than dizygotic twin pairs indicating that there is no major genetic contribution to receptor binding and that environmental influences predominate. The close similarity in binding between twin pairs in adulthood raises the possibility that familial, non-genetic, factors such as shared early life environment may programme the glucocorticoid receptor.  相似文献   

14.
目的:测定绝经后女性血清瘦素(leptin)与骨密度及及血清骨特异性碱性磷酸酶(BAP)和Ⅰ型胶原交联氨基末端肽(NTx)并探讨其关系。方法:用酶联免疫吸附试验测定287名40-80岁健康绝经后女性血清leptin以及血清骨特异性碱性磷酸酶(BAP)和Ⅰ型胶原交联氨基末端肽(NTx);用双能X线骨密度扫描仪测定总体、腰椎正位、总髋部骨密度以及体脂、瘦体重;分析它们之间的关系。结果:Leptin与髋部总体BMD呈正相关(r=0.162,P<0.05),校正年龄和体脂后,Leptin与髋部总体BMD相关性消失,Leptin与BAP相关无统计学意义;与NTX呈负相关(r=-0.119,P<0.05),校正年龄和体脂后,相关无统计学意义。BAP与总体骨密度、腰椎骨密度、髋部总体骨密度均呈负相关(r=-0.210,r=-0.236,r=-0.223,P<0.05),校正年龄和体质指数后,相关性都依然存在(r=-0.168,r=-0.187,r=-0.169,P<0.05)。NTx与总体骨密度、腰椎骨密度、髋部总体骨密度均呈负相关(r=-0.238,r=-0.232,r=-0.239,P<0.05),校正年龄和体质指数后...  相似文献   

15.
Impact of heredity in myopia   总被引:11,自引:0,他引:11  
  相似文献   

16.

Objective

Parathyroid hormone (PTH) and vitamin D are the most important hormones regulating calcium metabolism. In primary hyperparathyroidism (PHPT) excessive amounts of PTH are produced. Bone turnover is enhanced, leading to reduced bone mineral density and elevated levels of serum calcium. The aim of this study was to investigate relations between serum levels of 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2D) and bone mineral density, as well as known genetic polymorphisms in the vitamin D receptor and enzymes metabolising vitamin D in patients with PHPT.

Design/Subjects

We conducted a cross-sectional study of 52 patients with PHPT.

Results

Mean level of 25(OH)D was 58.2 nmol/L and median 1,25(OH)2D level was 157 pmol/L. Among our patients with PHPT 36.5% had 25(OH)D levels below 50 nmol/L. Serum 1,25(OH)2D was inversely correlated to bone mineral density in distal radius (p = 0.002), but not to bone mineral density at lumbar spine or femoral neck. The vitamin D receptor polymorphism Apa1 (rs7975232) was associated with bone mineral density in the lumbar spine.

Conclusions

The results suggest that PHPT patients with high blood concentrations of 1,25(OH)2D may have the most deleterious skeletal effects. Randomized, prospective studies are necessary to elucidate whether vitamin D supplementation additionally increases serum 1,25(OH)2D and possibly enhances the adverse effects on the skeleton in patients with PHPT.  相似文献   

17.
The combined and separate effects of exercise training and bisphosphonate (etidronate) therapy on bone mineral in postmenopausal women were compared. Forty-eight postmenopausal women were randomly assigned (double blind) to groups that took intermittent cyclical etidronate; performed strength training (3 d/week) and received matched placebo; combined strength training with etidronate; or took placebo and served as nonexercising controls. Bone mineral, lean tissue, and fat mass were assessed by dual-energy X-ray absorptiometry before and after 12 months of intervention. After removal of outlier results, changes in bone mineral density (BMD) of the lumbar spine and bone mineral content (BMC) of the whole body were greater in the subjects given etidronate (+2.5 and +1.4%, respectively) compared with placebo (-0.32 and 0%, respectively) (p < 0.05), while exercise had no effect. There was no effect of etidronate or exercise on the proximal femur and there was no interaction between exercise and etidronate at any bone site. Exercise training resulted in significantly greater increases in muscular strength and lean tissue mass and greater loss of fat mass compared with controls. We conclude that etidronate significantly increases lumbar spine BMD and whole-body BMC and that strength training has no additional effect. Strength training favourably affects body composition and muscular strength, which may be important for prevention of falls.  相似文献   

18.
OBJECTIVE--To examine the relation between bone density and indices of calcium metabolism including parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. DESIGN--A cross sectional study. SETTING AND SUBJECTS--138 women volunteers aged 45-65 with no known osteoporosis and unselected for disease status recruited for a dietary assessment study from the community using general practice registers. Volunteer rate was 20%. MAIN OUTCOME MEASURE--Bone mineral density measured with dual energy x ray absorptiometry. RESULTS--Bone density at the lumbar spine and neck and trochanteric regions of the femur was inversely related to serum intact parathyroid hormone concentrations and positively related to serum 25-hydroxyvitamin D concentrations. These associations were independent of possible confounding factors, including age, body mass index, cigarette smoking habit, menopausal status, and use of diuretics and postmenopausal hormone replacement therapy. These associations were apparent throughout the whole distribution of bone density and 25-hydroxyvitamin D and parathyroid hormone concentrations within the normal range, suggesting a physiological relation. CONCLUSIONS--The findings are consistent with the hypothesis that parathyroid hormone and 25-hydroxyvitamin D concentrations influence bone density in middle aged women. Findings from this study together with other work suggest that the role of vitamin D in osteoporosis should not be neglected. The associations with parathyroid hormone also indicate plausible biological mechanisms. The roughly 5-10% difference in bone density between top and bottom tertiles of serum 25-hydroxyvitamin D concentrations, though not large in magnitude, may have considerable public health implications in terms of prevention of osteoporosis and its sequelae, fractures.  相似文献   

19.
Osteoporosis is a major public health problem for old people. Genetic factors are considered to be major contributors to the pathogenesis of postmenopausal osteoporosis. The vitamin D receptor (VDR) gene is a prominent candidate gene for the regulation of postmenopausal bone mass; however, despite extensive studies, controversy remains regarding its association with postmenopausal body mineral density (BMD) variation. In this study, a total of 260 healthy postmenopausal Chinese women were genotyped at the VDR ApaI locus using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). Raw hip BMD was significantly associated with VDR ApaI polymorphism with and without adjusting for age (P=0.015 and 0.040, respectively). This genetic effect can explain 3.32% of hip BMD variation. However, the significant association vanished after correcting for both age and body mass index (BMI) (P=0.169). In addition, we observed a significant association between VDR ApaI polymorphism with unadjusted BMI(P=0.042) or BMI adjusted for age (P=0.049). The raw hip BMD was also found to be significantly correlated with BMI (r=0.517, P=0.0001), with BMI explaining 26.35% of the variation of hip BMD. All of these facts prompt us to conclude that the significant association between the VDR ApaI genotype and hip BMD may be modified by BMI in postmenopausal Chinese women. Our findings may partially explain the earlier inconsistent association results concerning the VDR gene and BMD, and highlight the importance of incorporating covariates such as BMI into osteoporosis association studies.  相似文献   

20.
The influence of genetics on human physique and obesity has been addressed by the literature. Evidence for heritability of anthropometric characteristics has been previously described, mainly for the body mass index (BMI). However, few studies have investigated the influence of genetics on the Heath-Carter somatotype. The aim of the present study was to assess the heritability of BMI and somatotype (endomorphy, mesomorphy, and ectomorphy) in a group of female monozygotic and dizygotic twins from childhood to early adulthood. A total of 28 females aged from 7 to 19 years old were studied. The group included 5 monozygotic and 9 dizygotic pairs of twins. The heritability was assessed by the twin method (h(2)). The anthropometric measures and somatotype were assessed using standard validated procedures. Significant differences between monozygotic and dizygotic pairs of twins were found for height, endomorphy, ectomorphy, and mesomorphy, and the heritability for these measures was high (h(2) between 0.88 and 0.97). No significant differences were found between monozygotic and dizygotic twins for weight, and the BMI and the heritability indexes were lower for these measures (respectively 0.42 and 0.52). The results of the present study have indicated that the somatotype may be more sensible to genetic influences than the BMI in females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号