首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase C (PKC) family, consisting of multiple isotypes, plays a major role in cellular signaling. In the nematode Caenorhabditis elegans, four pkc genes, tpa-1, pkc-1, pkc-2 and pkc-3, have been identified and investigated. Molecular analysis of tpa-1, pkc-1, and pkc-2 has shown that each gene encodes multiple PKC isoforms with different expression patterns. One of the tpa-1 isoforms, which is expressed in vulval cells, is found to play a role in nicotine-induced adaptation. The expression of pkc-1 seems to be specific to neurons, while that of pkc-2 is detected in several types of cells including neurons and muscle cells. An aPKC member encoded by pkc-3 has been shown to play an essential role in establishing the polarity of the zygote. Recent studies have revealed that the mechanism of polarity establishment mediated by aPKC is evolutionarily conserved in diverse organisms from nematodes to mammals. C. elegans provides an excellent model system for molecular dissection of the cellular signaling pathways involving PKC.  相似文献   

2.
3.
L L Georgi  P S Albert  D L Riddle 《Cell》1990,61(4):635-645
The dauer larva is a developmentally arrested, non-feeding dispersal stage normally formed in response to overcrowding and limited food. The daf-1 gene specifies an intermediate step in a hierarchy of genes thought to specify a pathway for neural transduction of environmental cues. Mutations in daf-1 result in constitutive formation of dauer larvae even in abundant food. This gene has been cloned by Tc1-transposon tagging, and it appears to encode a new class of serine/threonine kinase. A daf-1 probe detects a 2.5 kb mRNA of low abundance, and the DNA sequence indicates that the gene encodes a 669 amino acid protein, with a putative transmembrane domain and a C-terminal protein kinase domain most closely related to the cytosolic, raf proto-oncogene family. Hence, the daf-1 product appears to be a cell-surface receptor required for transduction of environmental signals into an appropriate developmental response.  相似文献   

4.
5.
In C. elegans, assembly of hypodermal hemidesmosome-like structures called fibrous organelles is temporally and spatially coordinated with the assembly of the muscle contractile apparatus, suggesting that signals are exchanged between these cell types to position fibrous organelles correctly. Myotactin, a protein recognized by monoclonal antibody MH46, is a candidate for such a signaling molecule. The antigen, although expressed by hypodermis, first reflects the pattern of muscle elements and only later reflects the pattern of fibrous organelles. Confocal microscopy shows that in adult worms myotactin and fibrous organelles show coincident localization. Further, cell ablation studies show the bodywall muscle cells are necessary for normal myotactin distribution. To investigate myotactin's role in muscle-hypodermal signaling, we characterized the myotactin locus molecularly and genetically. Myotactin is a novel transmembrane protein of approximately 500 kd. The extracellular domain contains at least 32 fibronectin type III repeats and the cytoplasmic domain contains unique sequence. In mutants lacking myotactin, muscle cells detach when embryonic muscle contraction begins. Later in development, fibrous organelles become delocalized and are not restricted to regions of the hypodermis previously contacted by muscle. These results suggest myotactin helps maintain the association between the muscle contractile apparatus and hypodermal fibrous organelles.  相似文献   

6.
In C. elegans, a Wnt/WG-like signaling pathway down-regulates the TCF/LEF-related protein, POP-1, to specify posterior cell fates. Effectors of this signaling pathway include a beta-catenin homolog, WRM-1, and a conserved protein kinase, LIT-1. WRM-1 and LIT-1 form a kinase complex that can directly phosphorylate POP-1, but how signaling activates WRM-1/LIT-1 kinase is not yet known. Here we show that mom-4, a genetically defined effector of polarity signaling, encodes a MAP kinase kinase kinase-related protein that stimulates the WRM-1/LIT-1-dependent phosphorylation of POP-1. LIT-1 kinase activity requires a conserved residue analogous to an activating phosphorylation site in other kinases, including MAP kinases. These findings suggest that anterior/posterior polarity signaling in C. elegans may involve a MAP kinase-like signaling mechanism.  相似文献   

7.
Prolonged odor exposure causes a specific, reversible adaptation of olfactory responses. A genetic screen for negative regulators of olfaction uncovered mutations in the cGMP-dependent protein kinase EGL-4 that disrupt olfactory adaptation in C. elegans. G protein-coupled olfactory receptors within the AWC olfactory neuron signal through cGMP and a cGMP-gated channel. The cGMP-dependent kinase functions in AWC neurons during odor exposure to direct adaptation to AWC-sensed odors, suggesting that adaptation is a cell intrinsic process initiated by cGMP. A predicted phosphorylation site on the beta subunit of the cGMP-gated channel is required for adaptation after short odor exposure, suggesting that phosphorylation of signaling molecules generates adaptation at early time points. A predicted nuclear localization signal within EGL-4 is required for adaptation after longer odor exposure, suggesting that nuclear translocation of EGL-4 triggers late forms of adaptation.  相似文献   

8.
In Caenorhabditis elegans, heterochronic genes constitute a developmental timer that specifies temporal cell fate selection. The heterochronic gene lin-42 is the C. elegans homolog of Drosophila and mammalian period, key regulators of circadian rhythms, which specify changes in behavior and physiology over a 24 hr day/night cycle. We show a role for two other circadian gene homologs, tim-1 and kin-20, in the developmental timer. Along with lin-42, tim-1 and kin-20, the C. elegans homologs of the Drosophila circadian clock genes timeless and doubletime, respectively, are required to maintain late-larval identity and prevent premature expression of adult cell fates. The molecular parallels between circadian and developmental timing pathways suggest the existence of a conserved molecular mechanism that may be used for different types of biological timing.  相似文献   

9.
Koga M  Zwaal R  Guan KL  Avery L  Ohshima Y 《The EMBO journal》2000,19(19):5148-5156
The c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family, was shown to be involved in the response to various stresses in cultured cells. However, there is little in vivo evidence indicating a role for a JNK pathway in the stress response of an organism. We identified the Caenorhabditis elegans mek-1 gene, which encodes a 347 amino acid protein highly homologous to mammalian MKK7, an activator of JNK. Mek-1 reporter fusion proteins are expressed in pharyngeal muscle, uterus, a portion of intestine, and neurons. A mek-1 deletion mutant is hypersensitive to copper and cadmium ions and to starvation. A wild-type mek-1 transgene rescued the hypersensitivity to the metal ions. Double mutants of mek-1 with an eat-5, eat-11 or eat-18 mutation, which are characterized by a limited feeding defect, showed distinct growth defects under normal conditions. Expression of an activated form of MEK-1 in the whole animal or specifically in the pharynx inhibited pharyngeal pumping. These results suggest a role for mek-1 in stress responses, with a focus in the pharynx and/or intestine.  相似文献   

10.
11.
Recently, we have isolated a cDNA encoding a muscarinic acetylcholine receptor (mAChR) from Caenorhabditis elegans. To investigate the regulation of phospholipase D (PLD) signaling via a muscarinic receptor, we generated stable transfected Chinese hamster ovary (CHO) cells that overexpress the mAChR of C. elegans (CHO-GAR-3). Carbachol (CCh) induced inositol phosphate formation and a significantly higher Ca(2+) elevation and stimulated PLD activity through the mAChR; this was insensitive to pertussis toxin, but its activity was abolished by the phospholipase C (PLC) inhibitor U73122. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after CCh treatment. The CCh-induced PLD activation and tyrosine phosphorylation were significantly reduced by the protein kinase C (PKC) inhibitor calphostin C and down-regulation of PKC and the tyrosine kinase inhibitor genistein. Moreover, the Ca(2+)-calmodulin-dependent protein kinase II (CaM kinase II) inhibitor KN62, in addition to chelation of extracellular or intracellular Ca(2+) by EGTA and BAPTA/AM, abolished CCh-induced PLD activation and protein tyrosine phosphorylation. Taken together, these results suggest that the PLC/PKC-PLD pathway and the CaM kinase II/tyrosine kinase-PLD pathway are involved in the activation of PLD through mAChRs of C. elegans.  相似文献   

12.
Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JNK kinases result in similar mislocalization of synaptic vesicle markers and enhance weak unc-16 mutant phenotypes. unc-116 kinesin heavy chain mutants also mislocalize synaptic vesicle markers, as well as a functional UNC-16::GFP. Intriguingly, unc-16 mutations partially suppress the vesicle retention defect in unc-104 KIF1A kinesin mutants. Our results suggest that UNC-16 may regulate the localization of vesicular cargo by integrating JNK signaling and kinesin-1 transport.  相似文献   

13.
SR-protein kinases (SRPKs) and their substrates, serine/arginine-rich pre-mRNA splicing factors, are key components of splicing machinery and are well conserved across phyla. Despite extensive biochemical investigation, the physiological functions of SRPKs remain unclear. In the present study, cDNAs for SPK-1, a C. elegans SRPK homologue, and CeSF2, an SPK-1 substrate, were cloned. SPK-1 binds directly to and phosphorylates the RS domain of CeSF2 in vitro. Both spk-1 and CeSF2 are predominantly expressed in germlines. RNA interference (RNAi) experiments revealed that spk-1 and CeSF2 play an essential role at the embryonic stage of C. elegans. Furthermore, RNAi studies demonstrated that spk-1 is required for germline development in C. elegans. We provide evidence that RNAi, achieved by the soaking of L1 larvae, is beneficial in the study of gene function in post-embryonic germline development.  相似文献   

14.
alpha-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 microM ALA increased the activity and phosphorylation of the AMPK alpha-subunit at Thr(172). Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser(79) was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca(2+) concentration measured by fura-2 fluorescent microscopy (P < 0.05), showing that ALA may activate AMPK through enhancing Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca(2+) by loading cells with 25 microM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser(79). Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser(79). In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.  相似文献   

15.
We show that epigallocatechin-3 gallate (EGCG), a major component of green tea, stimulates phospholipase D (PLD) activity in U87 human astroglioma cells. EGCG-induced PLD activation was abolished by the phospholipase C (PLC) inhibitor and a lipase inactive PLC-gamma1 mutant, which is dependent on intracellular or extracellular Ca(2+), with the possible involvement of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). EGCG induced translocation of PLC-gamma1 from the cytosol to the membrane and PLC-gamma1 interaction with PLD1. EGCG regulates the activity of PLD by modulating the redox state of the cells, and antioxidants reverse this effect. Moreover, EGCG-induced PLD activation was reduced by PKC inhibitors or down-regulation of PKC. Taken together, these results show that, in human astroglioma cells, EGCG regulates PLD activity via a signaling pathway involving changes in the redox state that stimulates a PLC-gamma1 [Ins(1,4,5)P(3)-Ca(2+)]-CaM kinase II-PLD pathway and a PLC-gamma1 (diacylglycerol)-PKC-PLD pathway.  相似文献   

16.
Atypical protein kinase C isoforms (aPKCs) transmit regulatory signals to effector proteins located in the cytoplasm, nucleus, cytoskeleton, and membranes. Mechanisms by which aPKCs encounter and control effector proteins in various microenvironments are poorly understood. By using a protein interaction screen, we discovered two novel proteins that adapt a Caenorhabditis elegans aPKC (PKC3) for specialized (localized) functions; protein kinase C adapter 1 (CKA1, 593 amino acids) and CKA1S (549 amino acids) are derived from a unique mRNA by alternative utilization of two translation initiation codons. CKA1S and CKA1 are routed to the cell periphery by exceptionally basic N-terminal regions that include classical phosphorylation site domains (PSDs). Tethering of PKC3 is mediated by a segment of CKA1 that constitutes a phosphotyrosine binding (PTB) domain. Two aromatic amino acids (Phe(175) and Phe(221)) are indispensable for creation of a PKC3-binding surface and/or stabilization of CKA1.aPKC complexes. Patterns of CKA1 gene promoter activity and CKA1/CKA1S protein localization in vivo overlap with patterns established for PKC3 expression and distribution. Transfection experiments demonstrated that CKA1/CKA1S sequesters PKC3 in intact cells. Structural information in CKA1/CKA1S enables delivery of adapters to the lateral plasma membrane surface (near tight junctions) in polarized epithelial cells. Thus, a PTB domain and PSDs collaborate in a novel fashion in CKA1/CKA1S to enable tethering and targeting of PKC3. Avid ligation of a PKC isoform is a previously unappreciated function for a PTB module.  相似文献   

17.
Microtubules deliver positional signals and are required for establishing polarity in many different organisms and cell types. In Caenorhabditis elegans embryos, posterior polarity is induced by an unknown centrosome-dependent signal. Whether microtubules are involved in this signaling process has been the subject of controversy. Although early studies supported such an involvement (O'Connell, K.F., K.N. Maxwell, and J.G. White. 2000. Dev. Biol. 222:55-70; Wallenfang, M.R., and G. Seydoux. 2000. Nature. 408:89-92; Hamill, D.R., A.F. Severson, J.C. Carter, and B. Bowerman. 2002. Dev. Cell. 3:673-684), recent work involving RNA interference knockdown of tubulin led to the conclusion that centrosomes induce polarity independently of microtubules (Cowan, C.R., and A.A. Hyman. 2004. Nature. 431:92-96; Sonneville, R., and P. Gonczy. 2004. Development. 131: 3527-3543). In this study, we investigate the consequences of tubulin knockdown on polarity signaling. We find that tubulin depletion delays polarity induction relative to wild type and that polarity only occurs when a small, late-growing microtubule aster is visible at the centrosome. We also show that the process of a normal meiosis produces a microtubule-dependent polarity signal and that the relative levels of anterior and posterior PAR (partitioning defective) polarity proteins influence the response to polarity signaling. Our results support a role for microtubules in the induction of embryonic polarity in C. elegans.  相似文献   

18.
Src family tyrosine kinase (SFK) has been implicated in the regulation of cell adhesion and migration during animal development. We show that SRC-1, an ortholog of SFK, plays an essential role in directing cell migration in Caenorhabditis elegans. The mutation in the src-1 gene results in defective distal tip cell (DTC)-directed gonad morphogenesis in an activity-dependent and DTC cell-autonomous manners. In the src-1 mutants, DTCs fail to turn and continue their centrifugal migration along the ventral muscles. The effect of the src-1 mutation is suppressed by mutations in genes that function in the CED/Rac pathway, suggesting that SRC-1 in DTCs is an upstream regulator of a Rac pathway that controls cytoskeletal remodeling. In the src-1 mutant, the expression of unc-5/netrin receptor is normally regulated, and neither the precocious expression of UNC-5 nor the mutation in the unc-5 gene significantly affects the DTC migration defect. These data suggest that SRC-1 acts in the netrin signaling in DTCs. The src-1 mutant also exhibits cell-autonomous defects in the migration and growth cone path-finding of Q neuroblast descendants AVM and PVM. However, these roles of SRC-1 do not appear to involve the CED/Rac pathway. These findings show that SRC-1 functions in responding to various extracellular guidance cues that direct the cell migration via disparate signaling pathways in different cell types.  相似文献   

19.
Caenorhabditis elegans PEB-1 is a novel DNA-binding protein expressed in most pharyngeal cell types and outside the pharynx in the hypodermis, hindgut, and vulva. Previous RNAi analyses indicated that PEB-1 is required for normal morphology of these tissues and growth; however, the peb-1 null phenotype was unknown. Here we describe the deletion mutant peb-1(cu9) that not only exhibits the morphological defects observed in peb-1(RNAi) animals, but also results in penetrant larval lethality characterized by defects in pharyngeal function and molting. Consistent with a function in molting, we found that PEB-1 was detectable in all hypodermal and hindgut cells underlying the cuticle. Comparison to molting-defective lrp-1(ku156) mutants revealed that the peb-1(cu9) mutants were particularly defective in shedding the pharyngeal cuticle, and this defect likely contributed to feeding defects and lethality. Most markers of pharyngeal cell differentiation examined were expressed normally in peb-1(cu9) mutants; however, g1 gland cell expression of a kel-1Colon, two colonsgfp reporter was reduced. As g1 gland cells have prominent functions during molting, we suggest defective gland cell differentiation contributes to peb-1(cu9) molting defects. In comparison, other peb-1 mutant phenotypes, including hindgut abnormalities, appeared independent of the molting defect. Similar phenotypes resulted from late loss of pha-4 function, suggesting that PEB-1 and PHA-4 have common functions in some tissues where they are co-expressed.  相似文献   

20.
The pleckstrin homology (PH) domain, identified in numerous signaling proteins including the beta-adrenergic receptor kinase (betaARK), was found to bind to various phospholipids as well as the beta subunit of heterotrimeric G proteins (Gbeta) [Touhara, K., et al. (1994) J. Biol. Chem. 269, 10217-10220]. Several PH domain-containing proteins are also substrates of protein kinase C (PKC). Because RACK1, an anchoring protein for activated PKC, is homologous to Gbeta (both contain seven repeats of the WD-40 motif), we determined (i) whether a direct interaction between various PH domains and RACK1 occurs and (ii) the effect of PKC on this interaction. We found that recombinant PH domains of several proteins exhibited differential binding to RACK1. Activated PKC and the PH domain of beta-spectrin or dynamin-1 concomitantly bound to RACK1. Although PH domains bind acidic phospholipids, the interaction between various PH domains and RACK1 was not dependent on the phospholipid activators of PKC, phosphatidylserine and 1, 2-diacylglycerol. Binding of these PH domains to RACK1 was also not affected by either inositol 1,4,5-triphosphate (IP(3)) or phosphatidylinositol 4,5-bisphosphate (PIP(2)). Our in vitro data suggest that RACK1 binds selective PH domains, and that PKC regulates this interaction. We propose that, in vivo, RACK1 may colocalize the kinase with its PH domain-containing substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号