首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rock climbers are often using the unique crimp grip position to hold small ledges. Thereby the proximal interphalangeal (PIP) joints are flexed about 90 degrees and the distal interphalangeal joints are hyperextended maximally. During this position of the finger joints bowstringing of the flexor tendon is applying very high load to the flexor tendon pulleys and can cause injuries and overuse syndromes. The objective of this study was to investigate bowstringing and forces during crimp grip position. Two devices were built to measure the force and the distance of bowstringing and one device to measure forces at the fingertip. All measurements of 16 fingers of four subjects were made in vivo. The largest amount of bowstringing was caused by the flexor digitorum profundus tendon in the crimp grip position being less using slope grip position (PIP joint extended). During a warm-up, the distance of bowstringing over the distal edge of the A2 pulley increased by 0.6mm (30%) and was loaded about 3 times the force applied at the fingertip during crimp grip position. Load up to 116N was measured over the A2 pulley. Increase of force in one finger holds by the quadriga effect was shown using crimp and slope grip position.  相似文献   

2.
The finger pads of eight subjects were loaded by tangential displacement (x-perpendicular to the long axis of the finger) of a contacted surface when the distal and proximal interphalangeal joints (DIP and PIP, respectively) were alternately constrained. The finger pad responded in a linearly viscoelastic manner during loading, but exhibited highly nonlinear behavior upon unloading. The observed tangential force (F(T)) relaxations were nonlinear and could be modeled well by a logarithmic function. The average F(T) relaxation duration (tau) was 11.8 s. Apparent tangential stiffness (kT), determined by F(T) after relaxation, varied linearly with normal force. With the DIP joints constrained the fingers showed significantly larger stiffness than with the PIP joints constrained (p<0.001). Implications for finger force coordination studies are discussed.  相似文献   

3.
The aim of this paper was to examine finger and bow string movements during archery by investigating a top Austrian athlete (FITA score = 1233) under laboratory conditions. Maximum lateral bow string deflection and angular displacements for index, third, and ring fingers between the full draw position and the end of the release were quantified using a motion tracking system. Stepwise multiple regression analyses were used to determine whether bow string deflection and finger movements are predictive for scoring. Joint ranges of motion during the shot itself were large in the proximal and distal interphalangeal joints, and much smaller in the metacarpophalangeal joints. Contrary to our expectations, greater deflection leads to higher scores (R2 = .18, p < .001) and the distal interphalangeal joint of the third finger weakly predicts the deflection (R2 = .11, p < .014). More variability in the joint angles of the third finger was found in bad shots than in good shots. Findings in this study let presume that maximum lateral bow string deflection does not adversely affect the archer's performance.  相似文献   

4.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

5.
The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study’s aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date.  相似文献   

6.
Traditionally, toe-to-hand transfers have been reserved for thumb amputations or for use after severe mutilating injuries. The authors report their experience with the use of second toe-for-finger amputations with preserved or reconstructible proximal interphalangeal joints in manual workers. The aim of the procedure was to reduce impairment and to upgrade the hand from a functional and cosmetic standpoint. Fifteen second-toe wrap-around or variations were carried out on 11 adults (18 to 41 years old). Four patients with two or more finger amputations received two sequential second toes; four patients with two finger amputations received one toe; and each of three patients with single-digit amputation received a single toe. All but one amputation were performed less than 3 weeks after the accident. All toes survived. Range of motion at the native proximal interphalangeal joint was more than 90 percent in all patients but one; however, it was minimal at the transplanted joints. Patient satisfaction was high from a cosmetic and functional standpoint. Ten of 11 laborers resumed their previous activity. On the basis of this experience, a classification with aesthetic and functional implications is proposed to help in the decision-making process when dealing with multidigital injuries. It is concluded that second-toe transfer is an excellent choice for finger amputation distal to the proximal interphalangeal joint in laborers. Its prime indication is for amputations of two fingers where at least one toe should be transferred, as required, to achieve an "acceptable hand" (three-fingered hand). Early transfer allows salvage of critical structures from the damaged finger, such as joints, tendons, and bone, that otherwise would be lost. Early transplantation is highly recommended.  相似文献   

7.
Mulder-Landsmeer phenomenon (inability to activiely straighten the interphalangeal joints fully when the metacarpophalangeal joint of a finger is passively held in maximal hyperextension) was confirmed in the normally hypermobile South Indian fingers. A powerful but limited de-extension of the proximal phalanx was noticied, in normagers, during completion of interphalangeal extension when the metacarpophalangeal joint was passively held in maximal hyperextension...  相似文献   

8.
Finger joint angles and finger forces during maximal cylindrical grasping were measured using multi-camera photogrammetry and pressure-sensitive sheets, respectively. The experimental data were collected from four healthy subjects gripping cylinders of five different sizes. For joint angles, an image analysis system was used to digitize slides showing markers. During the calibration of the camera system, both the nonlinear least square and the direct linear transform methods were applied and compared, the former providing the fewer errors; it was used to determine joint angles. Data were collected from the pressure-sensitive grip films by using the same image analysis system as used in the collection of the joint angle data. The method of using pressure-sensitive sheets provided an estimation of the weighted centre of the phalangeal forces. Results indicate that finger flexion angles at the metacarpophalangeal and proximal interphalangeal joints gradually increase as cylinder diameter decreases, but that at the distal interphalangeal joint the angle remains constant throughout all cylinder sizes. It was also found that most of the radio-ulnar deviation and the axial rotation angles at the finger joints deviate from zero, but the deviations are small. For the force measurement, it was found that total finger force increases as cylinder size decreases, and the phalangeal force centres are not located at the mid-points of the phalanges. The data obtained in this experiment would be useful for muscle force predictions and for the design of handles.  相似文献   

9.
Finger joint coordination during tapping   总被引:1,自引:0,他引:1  
We investigated finger joint coordination during tapping by characterizing joint kinematics and torques in terms of muscle activation patterns and energy profiles. Six subjects tapped with their index finger on a computer keyswitch as if they were typing on the middle row of a keyboard. Fingertip force, keyswitch position, kinematics of the metacarpophalangeal (MCP) and the proximal and distal interphalangeal (IP) joints, and intramuscular electromyography of intrinsic and extrinsic finger muscles were measured simultaneously. Finger joint torques were calculated based on a closed-form Newton–Euler inverse dynamic model of the finger. During the keystroke, the MCP joint flexed and the IP joints extended before and throughout the loading phase of the contact period, creating a closing reciprocal motion of the finger joints. As the finger lifted, the MCP joint extended and the interphalangeal (IP) joints flexed, creating an opening reciprocal motion. Intrinsic finger muscle and extrinsic flexor activities both began after the initiation of the downward finger movement. The intrinsic finger muscle activity preceded both the IP joint extension and the onset of extrinsic muscle activity. Only extrinsic extensor activity was present as the finger was lifted. While both potential energy and kinetic energy are present and large enough to overcome the work necessary to press the keyswitch, the motor control strategies utilize the muscle forces and joint torques to ensure a successful keystroke.  相似文献   

10.
The aim of the present study was to assess ultrasonography (US) for the detection of inflammatory and destructive changes in finger and toe joints, tendons, and entheses in patients with psoriasis-associated arthritis (PsA) by comparison with magnetic resonance imaging (MRI), projection radiography (x-ray), and clinical findings. Fifteen patients with PsA, 5 with rheumatoid arthritis (RA), and 5 healthy control persons were examined by means of US, contrast-enhanced MRI, x-ray, and clinical assessment. Each joint of the 2nd–5th finger (metacarpophalangeal joints, proximal interphalangeal [PIP] joints, and distal interphalangeal [DIP] joints) and 1st–5th metatarsophalangeal joints of both hands and feet were assessed with US for the presence of synovitis, bone erosions, bone proliferations, and capsular/extracapsular power Doppler signal (only in the PIP joints). The 2nd–5th flexor and extensor tendons of the fingers were assessed for the presence of insertional changes and tenosynovitis. One hand was assessed by means of MRI for the aforementioned changes. X-rays of both hands and feet were assessed for bone erosions and proliferations. US was repeated in 8 persons by another ultrasonographer. US and MRI were more sensitive to inflammatory and destructive changes than x-ray and clinical examination, and US showed a good interobserver agreement for bone changes (median 96% absolute agreement) and lower interobserver agreement for inflammatory changes (median 92% absolute agreement). A high absolute agreement (85% to 100%) for all destructive changes and a more moderate absolute agreement (73% to 100%) for the inflammatory pathologies were found between US and MRI. US detected a higher frequency of DIP joint changes in the PsA patients compared with RA patients. In particular, bone changes were found exclusively in PsA DIP joints. Furthermore, bone proliferations were more common and tenosynovitis was less frequent in PsA than RA. For other pathologies, no disease-specific pattern was observed. US and MRI have major potential for improved examination of joints, tendons, and entheses in fingers and toes of patients with PsA.  相似文献   

11.
LEARNING OBJECTIVES: After reviewing the article, the participant should be able to: (1) Describe the anatomy of the extensor tendons at the level of the forearm, wrist, hand, and fingers. (2) Recognize variations in the anatomy. (3) Master the hand examination and define the relevant findings in acute injuries of the extensor tendon(s). (4) Delineate the techniques for extensor repair in both acute and secondary (delayed) management. SUMMARY: Extension of the fingers is an intricate process that reflects the combined action of two independent systems. The interossei and lumbricals constitute the intrinsic musculature of the hand. These muscles innervated by the median and ulnar nerves extend the proximal interphalangeal and distal interphalangeal joints and flex the metacarpophalangeal joints. The extrinsic extensors are a group of muscles innervated by the radial nerve, originating proximal to the forearm. The extrinsic digital extensor muscles include the extensor digitorum communis, extensor indicis proprius, and extensor digiti quinti. The digital extensors function primarily to extend the metacarpophalangeal joints, but also extend the proximal interphalangeal and distal interphalangeal joints. Normal extensor physiology reflects a delicate balance between these two unique extensor systems. In the injured hand, a functioning intrinsic system may potentially compensate for an extrinsic deficit. An understanding of the relevant anatomy and an appreciation for the complex interplay involved in extensor physiology is necessary to recognize and manage these injuries.  相似文献   

12.
This study describes distal symphalangism in 36 individuals in two families, one of which is the largest pedigree of this rare defect yet documented. Distal symphalangism is ankylosis or rigidity of the distal interphalangeal joints of the hands and/or feet. The findings of this report substantiate the mutation as an autosomal dominant phenotype. Several manifestations of distal symphalangism were observed, including the lack of cutaneous creases over affected joints, brachydactyly, fourth-finger hypophalangism, absent nails, and rudimentary nails. Variability ranged from just toes affected, to a single finger affected, to all fingers and all lesser toes affected. The most common expression of the mutant gene was rigid index fingers. Craniosynostosis, premature closure of the sutures of the skull, was encountered twice in the larger of the two families. It is a possible pleiotropic effect of distal symphalangism.  相似文献   

13.
A method was developed to indirectly measure friction between the flexor tendons and pulleys of the middle and ring finger in vivo. An isokinetic movement device to determine maximum force of wrist flexion, interphalangeal joint flexion (rolling in and out) and isolated proximal interphalangeal (PIP) joint flexion was built. Eccentric and concentric maximum force of these three different movements where gliding of the flexor tendon sheath was involved differently (least in wrist flexion) was measured and compared. Fifty-one hands in 26 male subjects were evaluated. The greatest difference between eccentric and concentric maximum force (29.9%) was found in flexion of the PIP joint. Differences in the rolling in and out movement (26.8%) and in wrist flexion (14.5%) were significantly smaller. The force of friction between flexor tendons and pulleys can be determined by the greater difference between eccentric and concentric maximum force provided by the same muscles in overcoming an external force during flexion of the interphalangeal joints and suggests the presence of a non-muscular force, such as friction. It constitutes of 9% of the eccentric flexion force in the PIP joint and therefore questions the low friction hypothesis at high loads.  相似文献   

14.
We studied the dynamic behavior of finger joints during the contact period of tapping on a computer keyswitch, to characterize and parameterize joint function with a lumped-parameter impedance model. We tested the hypothesis that the metacarpophalangeal (MCP) and interphalangeal (IP) joints act similarly in terms of kinematics, torque, and energy production when tapping. Fifteen human subjects tapped with the index finger of the right hand on a computer keyswitch mounted on a two-axis force sensor, which measured forces in the vertical and sagittal planes. Miniature fiber-optic goniometers mounted across the dorsal side of each joint measured joint kinematics. Joint torques were calculated from endpoint forces and joint kinematics using an inverse dynamic algorithm. For each joint, a linear spring and damper model was fitted to joint torque, position, and velocity during the contact period of each tap (22 per subject on average). The spring-damper model could account for over 90% of the variance in torque when loading and unloading portions of the contact were separated, with model parameters comparable to those previously measured during isometric loading of the finger. The finger joints functioned differently, as illustrated by energy production during the contact period. During the loading phase of contact the MCP joint flexed and produced energy, whereas the proximal and distal IP joints extended and absorbed energy. These results suggest that the MCP joint does work on the interphalangeal joints as well as on the keyswitch.  相似文献   

15.
16.
The interphalangeal (IP) finger joints coordinate as a mechanism when the deep flexor is active. This mechanism is created by the complex finger extensor apparatus (EA) - a confluence of end tendons of one or two extensors, radial and ulnar interossei, and lumbrical - which inserts as a single structure into both the middle and distal phalanges. Although the IP-coupling principle was well demonstrated more than half a century ago, the detailed relationship between EA morphology and IP coupling remains not well described. Main reasons are that by dissection the EA's fiber network loses functional consistency, while fibers becoming taut or slack beyond measuring resolutions complicate measuring functional fiber motions. To circumvent these difficulties, we present a two dimensional kinematic multi tendon-string EA model of fiber slackness and tautness through IP motion, including the retinacular and oblique retinacular EA ligaments. The model parameters were the strings' lengths and attachment points. The model's functional redundancies were resolved by individually interactively fitting model IP trajectories to previously measured IP trajectories of 68 fingers. All model trajectories accurately fitted their target IP trajectories for proximal interphalangeal (PIP) joint ranges smaller than 25° to 45°; about half accurately fitted over the entire IP range with the remaining half having maximum approximation errors between 3° to 12°, while all models again converged to target trajectories for full IP flexion. These accuracies suggest the model reflects real functional EA principles, with potential applications in biomechanical modeling, surgical reconstruction, rehabilitation, and prosthetic EA replacements.  相似文献   

17.
Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5° rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10°), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging.  相似文献   

18.
A. Schinzel 《Human genetics》1979,49(2):167-173
Summary A newborn female is described who exhibited a characteristic facial dysmorphology including deep-set eyes, broad nasal bridge, small mouth, higharched and narrow palate, severely receding mandible and misshapen ears; constant flexion of the proximal interphalangeal joints, and short distal phalanges and nails of fingers; a congenital heart defect; marked muscular hypotonia, motor and growth retardation. She died at 4 months of age. Her karyotype revealed an additional band in 1q. Banding patterns and clinical picture suggest duplication of the segment 1q251q32.  相似文献   

19.
The aim of the study was to investigate the influence of a preceding flexion or extension movement on the static interaction of human finger flexor tendons and pulleys concerning flexion torque being generated. Six human fresh frozen cadaver long fingers were mounted in an isokinetic movement device for the proximal interphalangeal (PIP) joint. During flexion and extension movement both flexor tendons were equally loaded with 40 N while the generated moment was depicted simultaneously at the fingertip. The movement was stopped at various positions of the proximal interphalangeal joint to record dynamic and static torque. The static torque was always greater after a preceding extension movement compared to a preceding flexion movement in the corresponding same position of the joint. This applied for the whole arc of movement of 0–105°. The difference between static extension and flexion torque was maximal 11% in average at about 83° of flexion. Static torque was always smaller than dynamic torque during extension movement and always greater than dynamic torque during flexion movement. The kind of preceding movement therefore showed an influence to the torque being generated in the proximal interphalangeal joint. The effect could be simulated on a mechanical finger device.  相似文献   

20.
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号