首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of the mechanisms underlying the development of osteoporosis in the elderly has advanced greatly in the past few years. After an initial sudden loss of bone mineral mass in the peri-menopausal period there follows a more progressive and gradual loss that has also been seen in men. This initial drop in bone mass is due to a significant increase in bone resorption. There is also a significant reduction in bone formation with age that is mainly due to osteoblastogenesis in the bone marrow passing to a second plane, transferring its main role to adipogenesis. In this article, the latest evidence on the pathophysiology of senile osteoporosis is reviewed, highlighting the mechanisms of action of available treatments. Potential future treatments are also considered, which include new therapeutic approaches based on the pathophysiology of osteoporosis in the elderly, mainly on the potential reversibility of the adipogenesis.  相似文献   

2.
Osteoporosis is a common, morbid, and expensive disease of the elderly skeleton, particularly in the postmenopausal female, resulting in fractures of the spine, hip, and wrist. Dental osteopenia (inadequate bone mass, particularly of the mandible) is also a condition of significant morbidity for the elderly, associated with loss of teeth and poorly fitting dentures. Questions of immediate concern regarding these disorders are: (1) Are techniques available for quantitating mandibular bone mass? (2) Is dental osteopenia a localized manifestation of a generalized skeletal osteoporosis, with similar etiologies and risk factors, or is it an entirely separate disease process, due primarily to periodontal disease with its associated causal factors? (3) Are therapeutic measures noted to be of benefit in osteoporosis also of benefit in dental osteopenia? Recent studies from our laboratories address these questions and indicate efficiency of the mandibular microdensitometry technique for measuring mandibular bone mass. Also, these studies suggest that dental osteopenia is part of a generalized skeletal osteoporosis of the elderly female, and that therapy for osteoporosis would possibly be of value in the treatment of dental osteopenia.  相似文献   

3.
In senile osteoporosis the balance of adipogenesis and osteoblastogenesis in bone marrow stromal cells (BMSCs) is disrupted so that adipogenesis is increased with respect to osteoblastogenesis, and as a result, bone mass is decreased. While the molecular mechanisms controlling the balance between osteoblastogenesis and adipogenesis are of great interest, the exact nature of the signals regulating this process remains to be determined.  相似文献   

4.
5.
Osteoporosis is one of the major causes of morbidity in the elderly. Inflammation exerts a significant influence on bone turnover, inducing the chronic form of osteoporosis. Dietary nutrition has the capacity to modulate inflammatory response. Therefore, nutritional strategies and lifestyle changes may prevent age-related osteoporosis, thereby improving the quality of life of the elderly population. Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Hence, this study was undertaken to examine the effect of CLA on bone mineral density (BMD) in middle-aged C57BL/6 female mice. After 10 weeks on diet, CLA-fed mice (14 months) maintained a higher BMD in different bone regions than corn oil (CO)-fed mice. The increased BMD was accompanied by a decreased activity of proinflammatory cytokines (such as tumor necrosis factor alpha, interleukin-6 and the receptor activator of NF-kappaB ligand) and decreased osteoclast function. Furthermore, a significant decrease in fat mass and an increase in muscle mass were also observed in CLA-fed mice compared to CO-fed mice. In conclusion, these findings suggest that CLA may prevent the loss of bone and muscle mass by modulating markers of inflammation and osteoclastogenic factors.  相似文献   

6.
Cui L  Li T  Liu Y  Zhou L  Li P  Xu B  Huang L  Chen Y  Liu Y  Tian X  Jee WS  Wu T 《PloS one》2012,7(4):e34647
Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10(-6) mol/L to 10(-7) mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis.  相似文献   

7.
Osteoporosis is a common age-related disorder manifested clinically by skeletal fractures, especially fractures of the vertebrae, hip, and distal forearm. The major cause of these fractures is low bone mass, although an increase in trauma due to falls in the elderly also contributes. There are multiple causes for the low bone mass which, in any given individual, may contribute differently to the development of the osteopenia. The most important groups of causes are failure to achieve adequate peak bone mass, slow bone loss due to processes relating to aging, the menopause in women, and a variety of sporadic behavioral, nutritional, and environmental factors that affect bone mass in some but not in other individuals. The most important approach is prevention. Drugs and behavioral factors known to cause bone loss should be eliminated and perimenopausal women should be evaluated for possible preventive administration of estrogen. For patients with fractures due to established osteoporosis, the only drugs approved by the Food and Drug Administration are the antiresorptive agents calcium, estrogen, and calcitonin. Formation-stimulating regimens, however, are being developed and may be available for clinical use in the foreseeable future. These regimens may be capable of increasing bone mass to above the fracture threshold, thereby resulting in a clinical cure of the osteoporosis.  相似文献   

8.
The bone undergoes continuous remodeling of osteoblastic bone formation and osteoclastic bone resorption to maintain proper bone mass. It is also reported that bone marrow adiposity has a reciprocal role in osteoblasts due to their same origin from mesenchymal stem cells. In addition, one of the key mediators of adipogenesis, peroxisome-proliferator activated receptor-γ (PPARγ), plays a significant role in osteoblastogenesis in bone marrow mesenchymal stem cells. One dietary component that is known to have significant impact on adiposity and bone mass is conjugated linoleic acid (CLA). However, the link between controlling adiposity to improving bone mass by CLA has not been studied intensively. Thus, the purpose of this study is to determine the role of CLA on bone marrow adiposity and bone formation using murine mesenchymal stem cells. The results confirmed that the trans-10,cis-12 CLA, but not the cis-9,trans-11 CLA isomer, significantly inhibited adipogenesis and promoted osteoblastogenesis from mesenchymal stem cells. The inhibition of adipogenesis by the trans-10,cis-12 CLA was mediated by PPARγ; however, the trans-10,cis-12 CLA had a direct effect on osteoblastogenesis which was independent to PPARγ in this model. The trans-10,cis-12 CLA also had significant effects on osteoclastogenesis inhibitory factor, which suggests potential influence of CLA on osteoclastogenesis. Overall, the results suggest that the trans-10,cis-12, but not the cis-9,trans-11 CLA isomer, has a positive impact on bone health by both PPARγ mediated and independent mechanisms in mesenchymal stem cells.  相似文献   

9.
Bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space and also for bedridden elderly people. Recent studies have indicated that the sympathetic nervous system plays a role in bone metabolism. This paper reviews findings concerning with sympathetic influences on bone metabolism to hypothesize the mechanism how sympathetic neural functions are related to bone loss in microgravity. Animal studies have suggested that leptin stimulates hypothalamus increasing sympathetic outflow to bone and enhances bone resorption through noradrenaline and β-adrenoreceptors in bone. In humans, even though there have been some controversial findings, use of β-adrenoblockers has been reported to be beneficial for prevention of osteoporosis and bone fracture. On the other hand, microneurographically-recorded sympathetic nerve activity was enhanced by exposure to microgravity in space as well as dry immersion or long-term bed rest to simulate microgravity. The same sympathetic activity became higher in elderly people whose bone mass becomes generally reduced. Our recent findings indicated a significant correlation between muscle sympathetic nerve activity and urinary deoxypyridinoline as a specific marker measuring bone resorption. Based on these findings we would like to propose a following hypothesis concerning the sympathetic involvement in the mechanism of bone loss in microgravity: An exposure to prolonged microgravity may enhance sympathetic neural traffic not only to muscle but also to bone. This sympathetic enhancement increases plasma noradrenaline level and inhibits osteogenesis and facilitates bone resorption through β-adrenoreceptors in bone to facilitate bone resorption to reduce bone mass. The use of β-adrenoblockers to prevent bone loss in microgravity may be reasonable.  相似文献   

10.
PURPOSE OF REVIEW: This review summarizes recent findings concerning the genomic variations of the lipoprotein receptor-related protein 5 (LPR5) in relation to bone biology. RECENT FINDINGS: Mutations in the LRP5 gene causing high bone mass (HBM) and osteoporosis-pseudoglioma (OPPG) underscored the role of the Wnt-LRP5 canonical signaling on bone formation. Additional LRP5 activating mutations have been identified in a variety of sclerosing bone dysplasias, improving the diagnostic classification of these disorders. Association of polymorphisms in LRP5 with bone mineral density indicate that LRP5 genetic variation contribute to the risk of osteoporosis. Transgenic mice carrying the LRP5 HBM mutation have improved bone biomechanical properties, and the molecular mechanisms by which this mutation exerts its effects have been clarified. A number of KO mice have shown the complex effects of the Wnt-LRP5 pathway on bone mass and skeletal morphology. In vitro studies indicate that osteoblasts produce a variety of Wnts, the LRP5 co-receptor frizzled (Fzd), as well as LRP5 and Wnt inhibitors, i.e. dickkopf (Dkk1) and frizzled-related proteins (Sfrps), respectively, and delineate the role of these molecules in regulating the commitment of mesenchymal stem cells along the osteoblastic lineage. SUMMARY: Identification of pathogenic mutations and allelic variations in LRP5 has improved our understanding of the physiology of bone mass acquisition and the pathophysiology of several bone diseases, including osteoporosis. Understanding how complex interactions between agonistic and inhibitory factors in the Wnt-LRP5 canonical pathway influence osteoblast functions has the potential of providing new anabolic treatments for osteoporosis.  相似文献   

11.
Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.  相似文献   

12.
Bone homeostasis is regulated through osteoclasts and osteoblasts. Osteoporosis, which is induced with its accompanying decrease in bone mass with increasing age, is widely recognized as a major public health problem. Bone loss may be due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. There is growing evidence that nutritional and food factors may play a part in the prevention of bone loss with aging and have been to be worthy of notice in the prevention of osteoporosis. Zinc, an essential trace element, or genistein, which are contained in soybeans, has been shown to have a stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption, thereby increasing bone mass. These factors have an effect on protein synthesis and gene expression, which are related to bone formation in osteoblastic cells and bone resorption in osteoclastic cells. The combination of zinc and genistein is found to reveal the synergistic effect on bone anabolic effect. The oral administration of those factors has been shown to prevent on bone loss in ovariectomized rats, an animal model for osteoporosis, indicating a role in the prevention of osteoporosis. Supplemental intake of ingredient with the combination of zinc and genistein has been shown to have a preventive effect on osteoporosis in human subjects, suggesting a role in the prevention of bone loss.  相似文献   

13.
Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.  相似文献   

14.
Increased marrow medullary adipogenesis and an associated decrease in bone mineral density, usually observed in elderly individuals, is a common characteristic in senile osteoporosis. In this study we investigated whether cells of the medullary adipocyte lineage have the potential to directly support the formation of osteoclasts, whose activity in bone leads to bone degradation. An in vitro mesenchymal stem cell (MSC)-derived medullary adipocyte lineage culture model was used to study the expression of the important osteoclast mediators RANKL, M-CSF, SDF-1, and OPG. We further assessed whether adipocytes at a specific developmental stage were capable of supporting osteoclast-like cell formation in culture. In vitro MSC-derived medullary adipocytes showed an mRNA and protein expression profile of M-CSF, RANKL, and OPG that was dependent on its developmental/metabolic stage. Furthermore, RANKL expression was observed in MSC-derived adipocytes that were at a distinct lineage stage and these cells were also capable of supporting osteoclast-like cell formation in co-cultures with peripheral blood mononuclear cells. These results suggest a connection between medullary adipocytes and osteoclast formation in vivo and may have major significance in regards to the mechanisms of decreased bone density in senile osteoporosis.  相似文献   

15.
Accelerated osteoclastic bone resorption has a central role in the pathogenesis of osteoporosis and other bone diseases. Identifying the molecular pathways that regulate osteoclast activity provides a key to understanding the causes of these diseases and to the development of new treatments. Here we show that mice with inactivation of cannabinoid type 1 (CB1) receptors have increased bone mass and are protected from ovariectomy-induced bone loss. Pharmacological antagonists of CB1 and CB2 receptors prevented ovariectomy-induced bone loss in vivo and caused osteoclast inhibition in vitro by promoting osteoclast apoptosis and inhibiting production of several osteoclast survival factors. These studies show that the CB1 receptor has a role in the regulation of bone mass and ovariectomy-induced bone loss and that CB1- and CB2-selective cannabinoid receptor antagonists are a new class of osteoclast inhibitors that may be of value in the treatment of osteoporosis and other bone diseases.  相似文献   

16.
In osteoporosis, mesenchymal stem cells (MSCs) prefer to differentiate into adipocytes at the expense of osteoblasts. Although the balance between adipogenesis and osteogenesis has been closely examined, the mechanism of commitment determination switch is unknown. Here we demonstrate that phospholipase D1 (PLD1) plays a key switch in determining the balance between bone and fat mass. Ablation of Pld1 reduced bone mass but increased fat in mice. Mechanistically, Pld1/? MSCs inhibited osteoblast differentiaion with diminished Runx2 expression, while osteoclast differentiation was accelerated in Pld1?/? bone marrow-derived macrophages. Pld1?/? osteoblasts showed decreased expression of osteogenic makers. Increased number and resorption activity of osteoclasts in Pld1?/? mice were corroborated with upregulation of osteoclastogenic markers. Moreover, Pld1?/? osteoblasts reduced β-catenin mediated-osteoprotegerin (OPG) with increased RANKL/OPG ratio which resulted in accelerated osteoclast differentiation. Thus, low bone mass with upregulated osteoclasts could be due to the contribution of both osteoblasts and osteoclasts during bone remodeling. Moreover, ablation of Pld1 further increased bone loss in ovariectomized mice, suggesting that PLD1 is a negative regulator of osteoclastogenesis. Furthermore, loss of PLD1 increased adipogenesis, body fat mass, and hepatic steatosis along with upregulation of PPAR-γ and C/EBPα. Interestingly, adipocyte-specific Pld1 transgenic mice rescued the compromised phenotypes of fat mass and adipogenesis in Pld1 knockout mice. Collectively, PLD1 regulated the bifurcating pathways of mesenchymal cell lineage into increased osteogenesis and decreased adipogenesis, which uncovered a previously unrecognized role of PLD1 in homeostasis between bone and fat mass.  相似文献   

17.
Osteoporosis is the result of an imbalance between bone resorption and bone formation. Currently, mainly drugs that inhibit bone resorption are available for the treatment of osteoporosis. A new approach in the treatment of osteoporosis is the use of anabolic agents that increase bone turnover, both bone formation and resorption. Growth hormone (GH) and insulin-like growth factors (IGFs) are essential in the development and growth of the skeleton and for the maintenance of bone mass and density. We will review the evidence of GH and IGF-I in the pathophysiology and treatment of osteoporosis.  相似文献   

18.
Osteoporosis is a condition characterized by low bone mass and increased bone fragility, putting patients at risk of fractures, which are major causes of morbidity substantially in older people. Osteoporosis is currently attributed to various endocrine, metabolic and mechanical factors. However, emerging clinical and molecular evidence suggests that inflammation also exerts significant influence on bone turnover, inducing osteoporosis. Numerous proinflammatory cytokines have been implicated in the regulation of osteoblasts and osteoclasts, and a shift towards an activated immune profile has been hypothesized as important risk factor. Chronic inflammation and the immune system remodelling characteristic of ageing, as well as of other pathological conditions commonly associated with osteoporosis, may be determinant pathogenetic factors. The present article will review the current perspectives on the interaction between bone and immune system in the elderly, providing an interpretation of osteoporosis in the light of inflamm-ageing.  相似文献   

19.
Osteoporosis is a serious health problem in both Caucasians and Asians. Caucasians and Asians are two distinct major ethnic groups, which may have differential genetic determination underlying complex genetic diseases such as osteoporosis. However, to date, there has been no systematic review focusing on the aspect of ethnic difference in risk to osteoporosis and its potential underlying genetic determination between Asians and Caucasians. Here, we firstly review diverse aspects of osteoporosis-related differences, including the differences of epidemiology of osteoporotic fractures, peak bone mass, bone loss, bone area, bone geometry and drug treatment response between Asians and Caucasians. Then, we provide some potential genetic evidence on the different heritability and inheritance mode of bone phenotypes, the different osteoporosis candidate genes and the differential results in related molecular studies between them, to explain the above osteoporosis-related phenotypic differences. The results suggest that the osteoporosis-related phenotypic differences between Asians and Caucasians may be partially the result of the different ethnic genetic background. The present review may increase our understanding of potential different mechanisms related to ethnicity in pathogenesis of osteoporosis for effective and potentially customized treatments in different major ethnic groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号