首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Plant science》1987,52(3):159-167
Procedures for the isolation of vacuoles from the first leaf of oats at different stages of development were compared as to yield, size and purity of the vacuoles isolated. Mechanical disruption or polybase-induced lysis of isolated protoplasts did not lead to clean vacuole preparations. In contrast, relatively pure vacuoles were obtained by phosphate-dependent osmotic lysis. Liberation of intact vacuoles required a minimum concentration of K2HPO4 in the lysis medium, lower concentrations leading to vacuole fragmentation. The maximum concentration by which complete lysis occurred decreased progressively when leaves were fully grown and started to senesce. Only vacuoplasts (vacuoles with adhering cytoplasm) could be obtained from leaves older than 17 days. The implications for the control of senescence in oat leaves are discussed.  相似文献   

2.
H. Schnabl  C. Kottmeier 《Planta》1984,161(1):27-31
A method for the preparation of vacuoles from guard cells ofVicia faba L. is described. Vacuoles were released from guard-cell protoplasts by osmotic shock and purified on a Ficoll gradient. Contamination of the vacuoles was examined by assaying marker enzymes, such as fumarase, glucose-6-phosphate dehydrogenase, phosphofructokinase, acid phosphatase and mannosidase. Potassium ions in the incubation medium caused increases in the volume of the vacuoles by a factor of about 2.6, while the malate level remained unchanged. In contrast, malate synthesis was stimulated during the swelling phase when complete guard-cell protoplasts were exposed to K+. The possible role of K+ as an efficient osmotic effector is discussed.Abbreviations DEAE diethylaminoethyl - GCP guard-cell protoplast(s) - GCV guard-cell vacuoles(s) - MCP mesophyll cell protoplast(s) - MCV mesophyll cell vacuole(s)  相似文献   

3.
Osmotic water permeability of isolated vacuoles   总被引:5,自引:0,他引:5  
Morillon R  Lassalles JP 《Planta》1999,210(1):80-84
We measured the osmotic water permeability (P os) of vacuoles isolated from onion (Allium cepa L.), rape (Brassica napus L.), petunia (Petunia hybrida Hook.) and red beet (Beta vulgaris L.). For all the vacuolar types investigated, P os values were in the range 200–1000 μm s−1. The change in membrane surface area induced by an osmotic gradient was smaller than 2–6%. The vacuolar P os values for red beet and onion were reduced by 1 mM HgCl2, to 14% and 30% of the control values, respectively, but were partially restored to 51% and 76% by 5 mM β-mercaptoethanol. These results suggest that aquaporins were present in all the vacuoles tested. In HgCl2-treated onion vacuoles, the reduced P os (56 μm s−1) had a low activation energy (approx. 6 kJ mol−1), indicating that water permeation was still occurring mainly via aquaporins, and that the water permeability of the lipid part of the vacuolar membrane is probably very low. Received: 18 February 1999 / Accepted: 21 June 1999  相似文献   

4.
A simple and efficient procedure for isolation of protoplasts and then vacuoles from cultured cells of Catharanthus roseus (L.) G. Don is presented. Protoplasts were disrupted by an osmotic shock and the vacuoles vere purified by flotation on a single-step gradient. A comparison of the content and concentration of solutes (proteins, sugars, organic acids, alkaloids, mineral ions) in protoplasts and cells showed that massive and selective losses occur for most solutes during protoplast preparation. These are attributed to the osmotic adjustment and changes of membrane permeabilities occurring during plasmolysis. Data concerning the size, yield and purity of the isolated vacuoles are discussed. By analysis of isolated vacuoles, the vacuolar concentration and localization of solutes within protoplasts have been determined. The limits of this latter approach are stressed, however. Some evidence in favour of the selection of a special class of vacuoles during isolation is reported and discussed.  相似文献   

5.
Molecular Markers for Ion Compartmentation in Cells of Higher Plants   总被引:6,自引:3,他引:3  
The tonoplast plays a crucial role in ion compartmentation,which is a central feature of the salt tolerance of halophytes,but we do not know the properties of the membrane that conferthis ability. A method was, therefore, developed for the isolationof vacuoles from Suaeda maritima (L.) Dum. of sufficiently highpurity to enable biochemical characterization of their lipidand protein composition. Tonoplast fractions produced by densitygradient centrifugation, as well as vacuoles isolated by a varietyof methods (including DEAE dextran lysis, digitonin lysis, andmechanical shear forces) were unacceptably contaminated. A highlypure vacuole preparation was obtained when protoplasts werelysed by a mild hypotonic shock in alkaline buffer, in the presenceof the compatible cytosolute glycine-betaine, followed by shearforce during ultracentrifugation; cytoplasmic contaminationwas prevented by the addition of the zwitterionic detergent3-([3-cholamidopropyl]dimethylammonio)-l-propanesulphonate (CHAPS).Light microscopy of this preparation revealed no intact protoplastsand no contamination by chlorophyll could be detected. Electronmicroscopy showed the vacuoles to be single-membrane-bound structures,and was the only criterion upon which vacuoles could be separatedreliably from vacuoplasts, in which the plasmalemma is collapsedon to the tonoplast. Analysis by SDS-PAGE showed that a totalof 15 polypeptides were enriched in the tonoplast and 27 inthe soluble fraction from vacuole preparations, with a patternsimilar to that reported for glycophytic species. The pure tonoplastexhibited both vanadate-insensitive ATPase and pyrophosphataseactivities, but the properties of these enzymes were broadlysimilar to those of glycophytes. Analysis of membrane fattyacids showed that the degree of saturation of the putative tonoplastpreparation increased as the assessment of the purity of thepreparation (made by microscopy) increased. The ATPase couldbe substantially purified by ion-exchange FPLC. The resultsare discussed in relation to the degree of purity needed inmembrane preparations in order to be suitable for biochemicalanalysis. Key words: ATPase, membrane lipids, tonoplast, salinity, Suaeda maritima  相似文献   

6.
Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H+-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces.Abbveviations CAM Crassulacean acid metabolism - H+-ATPase proton-translocating ATPase  相似文献   

7.
The tonoplast amino-acid transporter of barley (Hordeum vulgare L.) mesophyll cells was functionally reconstituted by incorporating solubilized tonoplast membranes, vacuoplast membranes or tonoplast-enriched microsomal vesicles into phosphatidylcholine liposomes. (i) Time-, concentration- and ATP-dependence of amino-acid uptake were similar to results with isolated vacuoles. Although the orientation of incorporation could not be controlled, the results indicate that the transporter functions as a uniport system which allows regulated equilibration by diffusion between the cytosolic and vacuolar amino-acid pools. (ii) The ATP-modulated amino-acid carrier was also successfully reconstituted from barley epidermal protoplasts and Valerianella or Tulipa vacuoplasts, indicating its general occurrence. (iii) Fractionation of solubilized tonoplasts by size-exclusion chromatography followed by reconstitution of the fractions for glutamine transport gave two activity peaks: the first eluted in the region of high-molecular-mass vesicles and the second at a size of 300 kDa for the Triton-protein micelle.Abbreviation SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis This work was part of our research efforts within the Sonderforschungsbereich 176 of the University. We gratefully acknowledge experimental support by Marion Betz and valuable discussions with Professors U. Heber and U.-I. Flügge and Dr. Armin Gross (University of Würzburg) and Dr. E. Martinoia (ETH, Zürich, Switzerland).  相似文献   

8.
Three strains were isolated from hydrocarbon-polluted alpine habitats and were representatives of Cryptococcus terreus (strain PB4) and Rhodotorula creatinivora (strains PB7, PB12). All three strains synthesized and accumulated glycogen (both acid- and alkali-soluble) and trehalose during growth in complex medium containing glucose as carbon source and in minimal salt medium (MSM) with phenol as sole carbon and energy source. C. terreus strain PB4 showed a lower total accumulation level of storage compounds and a lower extracellular polysaccharides (EPS) production than the two R. creatinivora strains, PB7 and PB12. Biofilm formation and phenol degradation by yeast strains attached to solid carriers of zeolite or filter sand were studied at 10°C. Phenol degradation by immobilized yeast strains was always higher on zeolite compared with filter sand under normal osmotic growth conditions. The transfer of cells immobilized on both solid supports to a high osmotic environment decreased phenol degradation activity by all strains. However, both R. creatinivora PB7 and PB12 strains maintained higher ability to degrade phenol compared with C. terreus strain PB4, which almost completely lost its phenol degradation activity. Moreover, R. creatinivora strain PB7 showed the highest ability to form biofilm on both carriers under high osmotic conditions of cultivation.  相似文献   

9.
A procedure is described in which vacuoles are isolated from leaf tissue of lettuce ( Lactuca sativa L.). After incubation in an enzyme solution, the vacuoles are directly extracted from the leaf tissue by osmotic shock using a phosphate buffer. In this method no protoplasts are released from the leaf tissue. This procedure avoids the problems of separating vacuoles from protoplasts with similar density. To evaluate the purity of the vacuoles, the activity of glucan synthetase 11 (EC 2.4.1.34), NAD(P) H-cytochrome c reductase (EC 1.6.99.3) and malate dehydrogenase (EC 1.1.1.37) was measured. To measure vanadate- and nitrate-sensitive ATPase activity (EC 3.6.1.8) vesicles were prepared from the vacuoles and ATP-dependent vesicle acidification was measured as acridine orange quenching. Nitrate inhibited the quenching, while addition of vanadate had no effect. It was concluded that the vacuoles were not contaminated with plasma membranes. To evaluate the viability of the vacuoles [14C]-malate uptake was measured. The vacuoles showed a constant rate of [14C]-malate uptake during 45 min. This rate was maximal at pH 6.8.  相似文献   

10.
Vinay Sharma  Dieter Strack 《Planta》1985,163(4):563-568
The distribution of l-malate, sinapic acid esters and 1-sinapoylglucose: l-malate sinapoyltransferase (SMT) which catalyzes the synthesis of sinapoyl-l-malate were examined in preparations of protoplasts obtained from cotyledons of red radish (Raphanus sativus L. var. sativus). Vacuoles isolated from the protoplasts contained all of the SMT activity, all of the accumulated sinapic acid esters and about 50% of free l-malate present initially in the protoplasts. An esterase activity, acting on 1-sinapoyglucose, was found to be exclusively localized in the cytoplasm and a large proportion was found to be recoverable in a 100 000-g pellet obtained from protoplast lysates. The vacuoles were obtained after lysis of the protoplasts by osmotic shock and purification on a Ficoll gradient. The cytoplasmic contamination of vacuole preparations was found to be about 10%, as judged by enzymatic markers and microscopic inspection. No SMT activity was found in a 100 000-g pellet obtained from vacuole lysates. The results indicate that biosynthesis of sinapoyl-l-malate takes place within the central vacuoles of redradish cotyledons.Abbreviation SMT 1-sinapoylglucose: l-malate sinapol-transferase  相似文献   

11.
Georg Kaiser  Ulrich Heber 《Planta》1984,161(6):562-568
Sucrose transport has been investigated in vacuoles isolated from barley mesophyll protoplasts. Rates of sucrose transfer across the tonoplast were even higher in vitro than in vivo indicating that the sucrose transport system had not suffered damage during isolation of the vacuoles. Sucrose transport is carrier-mediated as shown by substrate saturation of transport and sensitivity to a metabolic inhibitor and to competitive substrates. A number of sugars, in particular maltose and raffinose, decreased uptake of sucrose. Sorbitol was slowly taken up but had no effect on sucrose transport. The SH-reagent p-chloromercuribenzene sulfonate inhibited sucrose uptake completely. The apparent Km of the carrier for sucrose uptake was 21 mM. Transport was neither influenced by ATP and pyrophosphate, with or without Mg2+ present, nor by protonophores and valinomycin (with K+ present). Apparently uptake was not energy dependent. Efflux experiments with preloaded vacuoles indicated that sucrose unloading from the isolated vavuoles is mediated by the same carrier which catalyses uptake. The vacuole of mesophyll cells appears to represent an intermediary storage compartment. Uptake of photosynthetic products into the vacuole during the light apparently minimizes osmotic swelling of the small cytosolic compartment of vacuolated leaf cells when photosynthetic productivity exceeds the capacity of the phloem for translocation of sugars.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazincethane-sulfonic acid - pCMBS p-chloromercuribenzene sulfonate Dedicated to Professor Dr. W. Simonis on the occasion of his 75th birthday  相似文献   

12.
The vacuoles of the yeast Saccharomyces cerevisiae are closely related to mammalian lysosomes and play a role in macromolecular degradation due to the hydrolytic enzymes present inside. The vacuoles also regulate osmotic pressure and control cellular homeostasis. In previous results, vacuoles were shown to activate the immune response of macrophages by promoting the production of immune-mediated transporters nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory cytokines. In this study, the effects of vacuoles on the phagocytosis activity of RAW264.7 cells and their potential as immune enhancers were evaluated, and receptors capable of recognizing vacuoles were examined. An investigation using the phagocytes assay showed that phagocytosis activity increased by the vacuole. Besides, after treatment with TLR2/4 inhibitor, the expression of pro-inflammatory cytokines by vacuoles was significantly reduced and the inducible nitric oxide synthase (iNOS) protein was also significantly reduced. However, treatment with a TLR2 inhibitor did not reduce the production of interleukin-6 (IL)-6, a pro-inflammatory cytokine. As a result of confirming the activation of TLR2/4 using Western blot and immunofluorescence (IF), the TLR2/4 protein expression and fluorescence intensity increased depending on the concentration of vacuoles. Yeast vacuoles significantly upregulate protein expression of p-p65/p-p38 MAPKs. In summary, the vacuoles isolated from S. cerevisiae in macrophages have increased phagocytic ability at a concentration of 20 (µg/ml) and can function as immune-enhancing agent suggesting that TLR2/4 mediated the p38 MAPK/nuclear factor kappa B signaling pathway.  相似文献   

13.
Summary The fine structure of erythrocytic stages of Plasmodium knowlesi was compared with that of the same parasite isolated from its host cell by a saponin technique. Rhesus monkeys experimentally infected with Plasmodium knowlesi were the source of parasitized red cells. The erythrocytic stages of this Plasmodium showed all the organelles described in other mammalian forms; the nucleus lacked a typical nucleolus but contained a cluster of granules. P. knowlesi did not have protozoan-type mitochondria as do the avian and reptilian forms, but had double-membrane-bounded bodies as observed in other mammalian malarial parasites.The isolation procedure caused a slight swelling of the parasite, but in general, the structure and structural relationships of the parasite were preserved. However, the isolation technique gave a new insight into the connection of the host cell cytoplasm with the large, so-called food vacuoles of the parasite. The parasite freed from its host cell showed clear spaces where the large vacuoles had been. The content of these vacuoles had been removed together with the red cell cytoplasm. As the nature of the isolation procedure precluded any disruption of the parasite itself, these findings support our view that the vacuoles are not true food vacuoles. If these were true food vacuoles, they would be completely enclosed by a parasite membrane within the parasite cytoplasm. However, we have demonstrated that they represent extensions of host cell cytoplasm in direct communication with the rest of the red cell. The outer membrane surrounding the intra-erythrocytic parasites disappeared after isolation of the parasite from the host cell. This strongly suggested that the outer membrane is of host cell origin. The budding process of the merozoites from a schizont was also described and discussed.This paper is contribution No. 558 from the Army Research Program on Malaria and was supported in part by Research Grant AI 08970-01 from the United States Public Health Service.  相似文献   

14.
Abstract. The osmotic behaviour of vacuolated plant cells (adaxial epidermal cells of Allium cepa bulb scales, and epidermal as well as chloroplast containing subepidermal stem base cells of Pisum sativum) was studied over a wide range of CaCl2 concentrations. The following results were obtained.
  • a. Allium cepa and Pisum sativum plant cells behave as an ideal osmometer as far as plasmolytic contraction of the protoplast is concerned.
  • b. The protoplasts of these cells could be plasmolysed to 15–45% of their original volume without the loss of membrane semi-permeability.
  • c. Cells plasmolysed in 1.0 kmol m?3 CaCl2 could be completely deplasmolysed and upon deplasmolysis the cells resumed protoplasmic streaming.
  • d. The above findings (a-c) indicate that during gradual plasmolysis and deplasmolysis membrane semi-permeability is maintained.
  • e. At very high plasmolysing concentrations vacuoles covered with the tonoplast separated from the rest of the protoplasm in some cells whereas others showed systrophy. Extruded vacuoles were able to respond to osmotic shrinkage.
  • f. The non-solvent space in Allium cells of about 3% also corresponded to the protoplasm volume calculated from the protoplast geometry (mean from results of direct measurement method and subtraction method).
  • g. Subepidermal stem base cells of water-stress-tolerant Pisum plants had a 75% greater non-solvent space than the control cells indicating that a water-stress-tolerant cell may contain a larger amount of protoplasm and/or a vacuole with a higher content of colloidal material in the vacuole.
  • h. Water-stress-tolerant cells showed greater tolerance to osmotic dehydration (volume reduction) than control cells.
  相似文献   

15.
Water permeability of the plasma membrane (PM) and the vacuolar membrane (VM) is important for intracellular and transcellular water movement in plants, because mature plant cells have large central vacuoles. We have developed a new method for measuring the osmotic water permeability of the PM and VM (P f1 and P f2, respectively) in individual plant cells. Here, the theoretical basis and procedure of the method are discussed. Protoplasts isolated from higher plant tissues are used to measure P f1 and P f2. Because of the semi-permeability (selective permeability) of cellular membranes, protoplasts swell or shrink under hypotonic or hypertonic conditions. A theoretical three-compartment model is presented for simulating time-dependent volume changes in the vacuolar and cytoplasmic spaces in a protoplast during osmotic excursions. The model describes the theoretical relationships between P f1, P f2 and the bulk osmotic water permeability of protoplasts (P f(bulk)). The procedure for measuring the osmotic water permeability is: (1) P f(bulk) is calculated from the time when half of the total change in protoplast volume is completed, by assuming that the protoplast has a single barrier to water movement across it (two-compartment model); (2) P f2 of vacuoles isolated from protoplasts is obtained in the same manner; and (3) P f1 is determined from P f(bulk) and P f2 according to the three-compartment model. The theoretical relationship between P fl (m s−1) and L Pl (hydraulic conductivity, l=1, 2) (m s−1 Pa−1) is also discussed. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorised users. Tsuneo Kuwagata and Mari Murai-Hatano contributed equally to the paper.  相似文献   

16.
Anthocyanin-containing vacuoles were isolated from protoplasts of a cell suspension culture of Daucus carota. The vacuoles were stable for at least 2 h as demonstrated by the fact that they showed no efflux of anthocyanin. The uptake of radioactively labelled anthocyanin was time-dependent with a pH optimum at 7.5, and could be inhibited by the protonophore carbonylcyanide m-chlorophenylhydrazone. Furthermore, the transport was specific, since vacuoles from other plant species showed no uptake of labelled anthocyanin, and strongly depended on acylation with sinapic acid, as deacylated glycosides were not taken up by isolated vacuoles. Hence, it is suggested that the acylation of anthocyanin, which is also required for the stabilization of colour in vacuoles, is important for transport, and that acylated anthocyanin is transported by a selective carrier and might be trapped by a pH-dependent conformational change of the molecule inside the acid vacuolar sap.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - EDTA ethylenediaminetetraacetic acid - ER endoplasmic reticulum - PVP polyvinylpyrrolidone - TLC thin-layer chromatography  相似文献   

17.
A laboratory investigation was conducted to study the effect of various concentrations of copper on the freshwater algae Scenedesmus quadricauda and Chlorella vulgaris. Electron-dense inclusions were observed in the vacuoles of S. quadricauda, and this alga showed some growth at a dose as high as 2,500 μg.1−1. The occurrence of the electron-dense inclusions was correlated significantly with the copper concentration and seems to be implicated in the tolerance of the species. C. vulgaris was much more sensitive to copper than S. quadricauda and showed osmotic changes and membrane damage.  相似文献   

18.
Intra- and transcellular water movements in plants are regulated by the water permeability of the plasma membrane (PM) and vacuolar membrane (VM) in plant cells. In the present study, we investigated the osmotic water permeability of both PM (P f1) and VM (P f2), as well as the bulk osmotic water permeability of a protoplast (P f(bulk)) isolated from radish (Raphanus sativus) roots. The values of P f(bulk) and P f2 were determined from the swelling/shrinking rate of protoplasts and isolated vacuoles under hypo- or hypertonic conditions. In order to minimize the effect of unstirred layer, we monitored dropping or rising protoplasts (vacuoles) in sorbitol solutions as they swelled or shrunk. P f1 was calculated from P f(bulk) and P f2 by using the ‘three-compartment model’, which describes the theoretical relationship between P f1, P f2 and P f(bulk) (Kuwagata and Murai-Hatano in J Plant Res, 2007). The time-dependent changes in the volume of protoplasts and isolated vacuoles fitted well to the theoretical curves, and solute permeation of PM and VM was able to be neglected for measuring the osmotic water permeability. High osmotic water permeability of more than 500 μm s−1, indicating high activity of aquaporins (water channels), was observed in both PM and VM in radish root cells. This method has the advantage that P f1 and P f2 can be measured accurately in individual higher plant cells. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. It includes four appendices, four tables and two figures. Mari Murai-Hatano and Tsuneo Kuwagata contributed equally to the paper. An erratum to this article is available at .  相似文献   

19.
We have studied changes in the binding of fluoresceinated lectins to human sperm during in vitro capacitation. We first determined the surface labeling pattern of viable sperm obtained by the swim-up procedure. Sperm were labeled with 100 μg/ml FITC-conjugated lectin at 4°C for 30 min. We simultaneously used Hoechst stain 33258 as a supravital stain to help differentiate surface from intracellular lectin labeling. Of 14 lectins studied, six (phytohemagglutinin-E, concanavalin A, Ricinus communis agglutinin-I, and the lectins of wheat germ, Lens culinaris, and Pisum sativum) bound to the entire surface of sperm, sometimes with minor local heterogeneity. Three lectins (from peanut, Maclura pomifera, and soybean) usually bound in a punctate manner, with more label on the tail than on the head. Five lectins (Ulex europaeus, Dolichos biflorus, Helix pomatia, and Vicia villosa lectins, and lectin II of Griffonia simplicifolia) bound very poorly or not at all to the sperm surface. Sperm were also inspected for changes in surface lectin binding patterns after 0, 5, and 23 hr of incubation in a capacitating medium. Two lectins showed reproducible changes. The labeling by Maclura pomifera agglutinin decreased by 5 hr in eight of ten experiments, and among sperm labeled with concanavalin A, the incidence of sperm with a highly fluorescent anterior margin of the sperm head increased by about 3.5-fold between 0 and 5 hr. The labeling pattern of the other lectins did not change.  相似文献   

20.
Vacuoles were isolated from Acer pseudoplatanus cell suspension culture using a one-step procedure involving the lysis of the protoplast plasmalemma through a gradient of Ficoll containing DEAE-Dextran. The vacuole suspensions were slightly contaminated by other organelles (less than 5%) and the isolated vacuoles readily accumulated neutral red. Since α-mannosidase was located exclusively in the vacuoles it was used as a convenient marker. It was shown that the number of vacuoles per protoplast decreased as the cell aged. Studies on the biochemical composition of the isolated vacuoles indicated that amino acids, organic acids and protein contents varied with the cell culture cycle, emphasizing the dynamic status of the vacuolar system in cell suspension cultures of Acer pseudoplatanus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号