首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Rapid genomic DNA variation due to methylation and copy number alteration was observed in carrot root explants 6 h after inoculation and during a 36-h period of exponential callus growth. De novo methylation and amplification of restricted BspNI fragments of low molecular weight occurred before cell cycle activation and should, therefore, be independent of progression through the S-phase of the cell cycle. Growth regulators seemed to influence the amplification pattern indirectly by regulating cell division activity. In exponentially growing callus tissue the copy number of most of the repetitive fragments was dramatically reduced. It is presumed that this reduction in the copy number of repetitive fragments is characteristic of rejuvenilization. 3-Indole-acetic-acid (IAA) and inositol in the medium increased the degree of unspecific genomic DNA methylation in growing rhizogenic carrot callus tissue in the absence of kinetin, which inhibits root induction at that stage. A possible relation to the induction of rhizogenesis is considered. The observed reduction in number of repetitive restriction fragments and the increase in DNA methylation are gross changes covering the total genome. The results are discussed in relation to the controversy concerning the general biological significance of the methylation and amplification of DNA sequences.  相似文献   

2.
As a genome model of fruit trees, peach (Prunus persica [L.] Batch) has advantages for studying structural and functional genomics. Okubo, a traditional peach variety used as a parent in Asian peach breeding, displays economically valuable agronomic traits. To develop an efficient platform for peach gene cloning and genomic research, a large-insert genomic DNA library of Okubo was constructed in a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, which can accept and stably maintain large genomic DNA fragments in bothEscherichia coli andAgrobacterium tumefaciens. The TAC library contains 41,472 recombinant clones with an average insert size of approximately 42 kb, and it is equivalent to 6 haploid peach genomes. The TAC library was stored in 2 ways: one copy as frozen cultures in 108 pieces of 384-well plates and another copy as bulked pools in 36 pieces of 96-well plates, each well containing 12 individual clones. The lack of hybridization signal to chloroplast and mitochondrial genes indicated that the TAC library had no significant cytoplast organelle DNA contamination. TAC clones were stable inE. coli cells until generation 100 and stable in bothE. coli andA. tumefaciens. Twenty-one clones containing the polygalacturonase-inhibiting protein (PGIP) gene were detected by using pooled PCR in the TAC library. Positive clones can be used for peach PGIP gene cloning and functional analysis. The library is well suited for gene cloning and genetic engineering in peach.  相似文献   

3.
Summary Selection and screening methods were devised which resulted in the identification of a number of somatic hybrid callus clones following fusion of Lycopersicon esculentum protoplasts and L. pennellii suspension culture protoplasts. Visual selection for callus morphology combined with a high fusion frequency and irradiation of one parental protoplast type (137Cs source, 1.5 Krads) resulted in selection of a callus clone population containing a high proportion of somatic hybrids. Analysis of a dimeric isozyme for the presence of a heterodimeric form was found to be satisfactory for distinguishing parental-type calli, somatic hybrid calli, and mixed calli derived from both types of unfused parental cells. No somatic hybrid calli produced shoots, although the sexual hybrid between L. esculentum and L. pennellii regenerated well under the culture conditions employed. This result suggests that the non-regenerable growth habit of the L. pennellii suspension culture was dominant in the somatic hybrid. The culture conditions described here are suitable for obtaining regenerated plants from L. esculentum mesophyll protoplasts. L. esculentum protoplast calli from fusion cultures gave rise to shoots with L. esculentum phenotype at higher frequency than calli from control unfused L. esculentum mesophyll protoplast cultures. The use of probes for species-specific organelle DNA fragments allowed identification of organelle DNA restriction fragments in digests of total DNA from small samples of individual callus clones. The callus clones analyzed either carried predominantly one parental plastid DNA type or mixtures of both types. Use of a mitochondrial DNA (mtDNA) probe which distinguishes two parental mtDNA fragments revealed that the L. pennellii-specific fragment was present in all clones examined, but the L. esculentum fragment was absent or in low proportion.  相似文献   

4.
Summary We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element.  相似文献   

5.
Summary Embryogenic suspension culture tissue of soybean (Glycine max Merrill.) was bombarded with particles coated with plasmid DNAs encoding hygromycin resistance andβ-glucuronidase (GUS). One to two weeks after bombardment, embryogenic tissue was placed in a liquid proliferation medium containing hygromycin. Four to six weeks after bombardment, lobes of yellow-green, hygromycin-resistant tissue, which began as outgrowths on brown clumps of hygromycin-sensitive tissue, were isolated and cultured to give rise to clones of transgenic embryogenic material. In vivo GUS assays of hygromycin-resistant clones showed that the early outgrowths could be negative, sectored, or positive for GUS activity. Transgenic, fertile plants could be routinely produced from the proliferating transgenic embryogenic clones. Southern hybridization analyses confirmed stable transformation and indicated that both copy number and integration pattern of the introduced DNA varied among independently transformed clones. Hybridization analysis of DNA from progeny plants showed genetic linkage of multiple copies of introduced DNA. An average of three transgenic clones were obtained per bombardment making this procedure very suitable for transformation of soybean.  相似文献   

6.
Summary A method has been developed which allows the isolation of very high molecular weight DNA (>2 million bp) from leaf protoplasts of tomato (Lycopersicon esculentum). The DNA isolated in this manner was digested in agarose with rare-cutting restriction enzymes and separated by pulsed field gel electrophoresis. The size range of the reslting fragments was determined by hybridization to a number of single copy clones and the suitability of these enzymes for the mapping of large DNA fragments was evaluated. Furthermore, five genetically tightly linked single copy clones have been used to begin the construction of a physical map in a region of the genome containing the Tm-2a gene which confers resistance to tobacco mosaic virus. Two of the five clones were found to be on the same 560 kb SalI fragment and therefore are no further apart than that distance. The remaining three markers are distributed over at least 3 million bp, so that the total minimum physical distance of that cluster is at least 4 million bp. The results are discussed with respect to correlations between recombination frequencies and physical distance as well as physical mapping large regions of a complex plant genome like tomato.  相似文献   

7.
Summary Tissue culture of the Zea mays inbred line A188 resulted in the regeneration of plants having a high level of phenotypic variation compared to seed-grown control plants. To determine how such variation was induced and whether this could be related to specific in vitro culture methods, callus cultures were established and maintained on different, commonly used culture media. Plants were regenerated and the genomic DNA of callus cultures and regenerants analysed for RFLP differences. The results show that regardless of the gene probe used, callus formation resulted in significant deviations from the DNA pattern normally found in seed-grown control plants. Alterations in gene copy number also occurred. As differentiation and organogenesis began, the level of DNA variation fell, and most of the regenerated plants showed a genetic similarity to the controls; those with RFLP differences were the somaclonal variants.  相似文献   

8.
Rice inflorescences were inoculated with Agrobacterium tumefaciens strain LBA4404 carrying plasmid pJD4 with application of vacuum infiltration. After co-cultivation, callus was initiated and subjected to hygromycin selection, and plants were regenerated from resistant callus lines. Based on the total number of co-cultivated inflorescences bearing flowers 1 to 3 mm in length, the average frequency for recovering independent transgenic rice plants was at least 30%. Seeds from selfed R0 plants were harvested within 6 months after initiation of the experiments. Genomic DNA blot analysis showed that genes in the T-DNA of the binary plasmid were stably integrated into the rice genome, typically at low copy number. In most, but not all, cases the transgene was transmitted to R1 progeny at a frequency characteristic for Mendelian inheritance of a single dominant trait. For selfed progeny of one two-locus insertion line, reactivation of GUS expression was observed for a single copy locus that segregated from a silenced multicopy locus. For this line and some additional plants, fluorescence in situ hybridization was used to visualize the chromosomal location of the transgene insert.  相似文献   

9.
In higher plants, plastid and mitochondrial genomes occur at high copy numbers per cell. Several recent publications have suggested that, in higher plants like Arabidopsis and maize, chloroplast DNA is virtually absent in mature and old leaves. This conclusion was mainly based on DAPI staining of isolated chloroplasts. If correct, the finding that chloroplasts in mature leaves lack DNA would change dramatically our understanding of gene expression, mRNA stability and protein stability in chloroplasts. In view of the wide implications that the disposal of chloroplast DNA during leaf development would have, we have reinvestigated the age dependency of genome copy numbers in chloroplasts and, in addition, tested for possible changes in mitochondrial genome copy number during plant development. Analyzing chloroplast and mitochondrial DNA amounts in Arabidopsis and tobacco plants, we find that organellar genome copy numbers remain remarkably constant during leaf development and are present in essentially unchanged numbers even in the senescing leaves. We conclude that, during leaf development, organellar gene expression in higher plants is not significantly regulated at the level of genome copy number and we discuss possible explanations for the failure to detect DNA in isolated chloroplasts stained with DAPI.  相似文献   

10.
Chromosome 1R was microdissected and collected from mitotic metaphase spreads of rye (Secale cereale L.) by using glass needles. The isolated chromosomes were amplified in vitro by Sau3A linker adaptor-mediated polymerase chain reaction (PCR). After amplification, the presence of rye-specific DNA was verified by Southern hybridization. The second-round PCR products from five 1R chromosomes were cloned into a plasmid vector to create a chromosome-specific library, which produced approximately 220,000 recombinant clones. Characterization of the microclone library showed that the 172 clones evaluated ranged in size from 300–1800 bp with an average size of 950 bp, of which approximately 42% were medium/high copy and 58% were low/unique copy clones. Chromosome in situ hybridization confirmed that the PCR products from microdissected chromosomes originated from chromosome 1R, indicating that many chromosome 1R-specific sequences were present in the library. Received: 5 December 1998; in revised form: 15 April 1999 / Accepted: 29 April 1999  相似文献   

11.
Hypericum brasiliense, a non-domesticated plant has been shown to have useful medicinal properties. This plant has not been cultivated so a protocol for mass propagation based on selection of superior clones was developed and a protocol established for the culture of callus cells that could be used for in vitro metabolite production. A micropropagation method based on amplification of nodal buds was developed, by selection, from ten seedling clones that were examined for growth rate, multiplication rate and rooting. The effect of various basal media, growth regulator types and concentrations were examined for optimal callus induction. Optimal callus induction occured on either Murashige and Skoog's or Gamborg's media supplemented with 1 to 2 mg l–1 of 2,4-dichlorophenoxyacetic acid.Abbreviations B5 Gamborg's medium - 2,4-Dscd 2,4-dichlorophenoxyacetic acid - IAA indolacetic acid - MS Murashige & Skoog's medium - NAA naphtaleneacetic acid  相似文献   

12.
Cre-lox mediated site-specific integration in tobacco or Arabidopsis used polyethylene glycol or Agrobacterium, respectively, to deliver the integrating DNA. The polyethylene glycol method is inconvenient since it requires the use of protoplasts. The Agrobacterium method is inefficient as the single-stranded T-DNA is not a substrate for Cre-lox recombination. In this study, we tested the biolistic method for the site-specific insertion of DNA into the rice genome. Two target callus lines, each harboring a single genomic lox target, were generated by Agrobacterium-mediated transformation. The target callus lines were subjected to a second round of transformation by particle bombardment with a construct designed to excise the plasmid backbone from the integrating DNA, followed by the recombination of the integrating DNA into the genomic lox target. Site-specific integration was obtained from both target callus lines. Three integrant plants were regenerated from one target line and were found to have a precise copy of the integrating DNA at the target site, although only one plant has the integrating DNA as the sole copy in the genome. Site-specific integration through the biolistic delivery of DNA can be considered for other plants that are transformable via particle bombardment.  相似文献   

13.
The Paternal-Sex-Ratio (PSR) chromosome of Nasonia vitripennis contains several families of repetitive DNAs that show significant sequence divergence but share two palindromic regions. This study reports on the analysis of junctions between two of these repetitive DNA families (psr2 and psr18). Three lambda clones that hybridized to both repeat families were isolated from PSR-genomic DNA libraries through multiple screenings and analyzed by Southern blots. Analysis of clones showed a region in which the two repeat types are interspersed, flanked by uniform blocks of each repeat type. PCR amplification of genomic DNA confirmed the contiguous arrangement of psr2 and psr18 on PSR and identified an additional junction region between these repeats that was not present in the lambda inserts. We isolated and sequenced 41 clones from the lambda inserts and genomic PCR products containing junction sequences. Sequence analysis showed that all transitions between psr2 and psr18 repeats occurred near one of the two palindromes. Based on the inheritance pattern of PSR, recombination between repeats on this chromosome must be mitotic (rather than meiotic) in origin. The occurrence of exchanges near the palindromes suggests that these sequences enhance recombination between repeat units. Rapid amplification of repetitive DNA may have been an important factor in the evolution of the PSR chromosome. Correspondence to: John H. Werren  相似文献   

14.
15.
Summary Carcinogen-induced amplification at the CupI locus, coding for a metallothionein protein, was studied in the yeast Saccharomyces cerevisiae. Exposure of cells from three different haploid strains, 4939, DBY746 and 320, to chemical carcinogens such as N-methyl-N-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS) and 4-nitroquinoline-N-oxide (4NQO) enhanced the frequency of copper-resistant colonies up to several hundred fold. Copper-resistant clones obtained from strains DBY746 and 320, which contain more than one copy of the CupI locus, displayed a four-to eightfold amplification of the CupI sequences. In these clones the amplified CupI sequences were organized in a tandem array. Carcinogen treatment of strain 4939 in which only one copy of the CupI gene is present produced resistant colonies without CupI amplification. The possible use of the yeast system to study gene duplication and amplification is discussed.  相似文献   

16.
Twenty-eight Bam H 1 restriction fragments were isolated from normal mitochondrial DNA of maize by recombinant DNA techniques to investigate the organization of the mitochondrial genome. Each cloned fragment was tested by molecular hybridization against a Bam digest of total mitochondrial DNA. Using Southern transfers, we identified the normal fragment of origin for d each clone. Twenty-three of the tested clones hybridized only to the fragment from which the clone was derived. In five cases, labeling of an additional band indicated some sequence repetition in the mitochondrial genome. Four clones from normal mitochondrial DNA were found which share sequences with the plasmid-like DNAs, S-1 and S-2, found in S male sterile cytoplasm. The total sequence complexity of the clones tested is 121×106 d (daltons), which approximates two thirds of the total mitochondrial genome (estimated at 183×106 d). Most fragments do not share homology with other fragments, and the total length of unique fragments exceeds that of the largest circular molecules observed. Therefore, the different size classes of circular molecules most likely represent genetically discrete chromosomes in a complex organelle genome. The variable abundance of different mitochondrial chromosomes is of special interest because it represents an unusual mechanism for the control of gene expression by regulation of gene copy number. This mechanism may play an important role in metabolism or biogenesis of mitochondria in the development of higher plants.  相似文献   

17.
Summary Dialect-1, species-specific repetitive DNA sequence of barley Hordeum vulgare, was cloned and analysed by Southern blot and in situ hybridization. Dialect-1 is dispersed through all barley chromosomes with copy number 5,000 per genome. Two DNA fragments related to Dialect-1 were revealed in phage library, subcloned and mapped. All three clones are structurally heterogenous and it is suggested that the full-length genomic repeat encompassing Dialect-1 is large in size. The Dialect-1 DNA repeat is represented in the genomes of H. vulgare and ssp. agriocrithon and spontaneum in similar form and copy number; it is present in rearranged form with reduced copy number in the genomes of H. bulbosum and H. murinum, and it is absent from genomes of several wild barley species as well as from genomes of wheat, rye, oats and maize. Dialect-1 repeat may be used as a molecular marker in taxonomic studies and for identification of barley chromosomes in interspecies hybrids.  相似文献   

18.
Transformation of 12 different plasmids into soybean via particle bombardment   总被引:21,自引:0,他引:21  
Particle bombardment offers a simple method for the introduction of DNA into plant cells. Multiple DNA fragments may be introduced on a single plasmid or on separate plasmids (co-transformation). To investigate some of the properties and limits of co-transformation, 12 different plasmids were introduced into embryogenic suspension culture tissue of soybean [Glycine max (L.) Merrill] via particle bombardment. The DNAs used for co-transformation included 10 plasmids containing KFLP markers for maize and 2 plasmids separately encoding hygromycin-resistance and ß-glucuronidase. Two weeks following bombardment with the 12 different plasmids, suspension culture tissue was placed under hygromycin selection. Hygromycin-resistant clones were isolated after an additional 5 to 6 weeks. Southern hybridization analysis of 26 hygromycin-resistant embryogenic clones verified the presence of introduced plasmid DNAs. All of the co-transforming plasmids were present in most of the transgenic soybean clones and there was no preferential uptake and integration of any of the plasmids. The copy number of individual plasmids was approximately equal within clones but highly variable between clones. While some clones contained as few as zero to three copies of each plasmid, others clones contained as many as 10 to 15 copies of each of the 12 different plasmids.  相似文献   

19.
Root rot disease tolerant clones of turmeric variety Suguna of Curcuma longa L. were isolated using continuous in vitro selection technique against pure culture filtrate of Pythium graminicolum. Large amount of profuse, compact, creamish white callus was obtained from in vivo vegetative bud when cultured on LSBM fortified with 2,4-D (3 mg l−1) after 45 days of culture. Callus was challenged with pure culture filtrate of P. graminicolum to isolate viable callus within 30 days of culture, which was further subjected to pure culture filtrate treatment. After three cycles of treatment, four cell lines which are tolerant to culture filtrate was isolated through continuous in vitro selection and subcultured on regeneration medium LSBM fortified with BAP (4 mg l−1) along with the control non-selected callus to obtain complete plantlets through discontinuous in vitro selection technique. Plants regenerated from tolerant and non-selected calli were screened for disease tolerance by adopting in vitro sick plot technique. The data obtained from this experiment revealed a ratio of 225:49 tolerant: susceptible in vitro clones retrieved from tolerant callus. However, plants regenerated from the CL1a1 and non-selected calli were susceptible under in vitro sick plot technique. The root rot disease tolerant clones were hardened and established in soil with 90% survival frequency.  相似文献   

20.
Restriction fragment polymorphisms were used to identify and quantify the nuclear contributions from each parent to somatic hybrid plants between tomato (Lycopersicon esculentum Mill.) cv. Sub-Arctic Maxi and Solanum lycopersicoides Dun. Three single-copy clones, 2–13, 2–17, and 3–288, and a clone for the 45s ribosomal RNA, pHA2, all mapped to chromosome 2 of tomato, were used in analysis of 47 somatic hybrids. The amount of hybridizing probe for each parental band was quantified by densitometry of the autoradiograph film. Analyses with the three single-copy clones indicated that there were more than two S. lycopersicoides copies in most somatic hybrid plants. For at least one somatic hybrid there was a loss of one tomato copy. No evidence was found for more than two copies donated from tomato or loss of a copy from S. lycopersicoides. Most of the observed variation in copy number of the single-copy clones was consistent with chromosomal changes occurring in the suspension cells from which S. lycopersicoides parental protoplasts were derived.The number of copies of rDNA derived from each parent varied independently of the number of copies of single-copy clones from each parent. Changes in the copy number of rDNA occurred in both tomato and S. lycopersicoides genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号