首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Distribution of apolipoprotein A-IV in human plasma   总被引:9,自引:0,他引:9  
Human apoA-IV was purified from delipidated urinary chylomicrons. Monospecific antibodies were raised in rabbits and used to develop a double antibody radioimmunoassay (RIA). Displacement of 125I-labeled apoA-IV by plasma or purified chylomicron apoA-IV resulted in parallel displacement curves, indicating that apoA-IV from both sources share common antigenic determinants. The apoA-IV level in plasma from normal healthy fasting male subjects (n = 5) was 37.4 +/- 4.0 mg/dl, while fat-feeding increased the level to 49.1 +/- 7.9 mg/dl (P less than 0.05) at 4 hr. The apoA-IV level in plasma from abetalipoproteinemic fasting subjects was 13.7 +/- 3.1 mg/dl (n = 5). Plasma from a single fasting Tangier subject showed a reduced apoA-IV level of 21.1 mg/dl. The distribution of apoA-IV in fasting and postprandial plasma was determined by 6% agarose gel chromatography. Fifteen to 25% of plasma apoA-IV eluted in the region of plasma high density lipoprotein (HDL), with the remainder eluting in subsequent column fractions. In abetalipoproteinemic plasma this HDL fraction is reduced and lacks apoA-IV, suggesting that at least some of the apoA-IV on these particles is normally derived from triglyceride-rich lipoproteins. Lipemic plasma from a fat-fed subject showed a small rise (3%) in chylomicron-associated apoA-IV. Gel-filtered HDL and subsequent apoA-IV-containing fractions were subjected to 4-30% polyacrylamide gradient gel electrophoresis (4/30 GGE), and apoA-IV was identified by immunolocalization following transfer of proteins to nitrocellulose paper. In normal plasma apoA-IV was localized throughout all HDL fractions. In addition, normal plasma contained apoA-IV localized in a small particle (diameter 7.8-8.0 nm). This particle also contained apoA-I and lipid. A markedly elevated saturated to unsaturated cholesteryl ester ratio was present in gel-filtered plasma fractions containing small HDL, suggesting an intracellular origin of these particles. In abetalipoproteinemic plasma apoA-IV was absent from all HDL fractions except for the small HDL particles, suggesting that they are not derived from the surface of triglyceride-rich particles. All plasmas contained free apoA-IV. In contrast to gel-filtered plasma, lipoprotein subfractions of fasted normal plasma prepared in the ultracentrifuge primarily contained apoA-IV in the d greater than 1.26 g/ml fraction, suggesting an artifactual redistribution of the apolipoprotein during centrifugation. Overall, these data suggest that apoA-IV secretion into plasma is increased with fat feeding, and that apoA-IV normally exists as both a free apolipoprotein and in association with HDL particles.  相似文献   

2.
Recent studies showed lower apolipoprotein A-IV (apoA-IV) plasma concentrations in patients with coronary artery disease (CAD). The actual distribution of the antiatherogenic apoA-IV in human plasma, however, is discussed controversially and it was never investigated in CAD patients. We therefore developed a gentle technique to separate the various apoA-IV-containing plasma fractions. Using a combination of precipitation of all lipoproteins with 40% phosphotungstic acid and 4 M MgCl2, as well as immunoprecipitation of all apoA-I-containing particles with an anti-apoA-I antibody, we obtained three fractions of apoA-IV: lipid-free apoA-IV (about 4% of total apoA-IV), apoA-IV associated with apoA-I (LpA-I:A-IV, 12%), and apoA-I-unbound but lipoprotein-containing apoA-IV (LpA-IV, 84%). We compared these three apoA-IV fractions between 52 patients with a history of CAD and 52 age- and sex-matched healthy controls. Patients had significantly lower apoA-IV levels when compared to controls (10.28 +/- 3.67 mg/dl vs. 11.85 +/- 2.82 mg/dl, P = 0.029), but no major differences for the three plasma apoA-IV fractions. We conclude that our gentle separation method reveals a different distribution of apoA-IV than in many earlier studies. No major differences exist in the apoA-IV plasma distribution pattern between CAD patients and controls. Therefore, the antiatherogenic effect of apoA-IV has to be explained by other functional properties of apoA-IV (e.g., the antioxidative characteristics).  相似文献   

3.
A method for measuring human apolipoprotein A-IV has been developed using the competitive enzyme-linked immunosorbent assay (ELISA) system. The assay described is relatively easy, rapid, and inexpensive to perform, uses convenient dilutions of plasma (1/8-1/32) but is sensitive enough to quantitate the apoA-IV content of lipoproteins following gel filtration of small (0.3-0.5 ml) volumes of plasma. The working range is 100-600 ng of apoA-IV per 50-microliters sample and the intra- and interassay coefficients of variations are 7.5 and 10.2% (means), respectively. The mean apoA-IV concentration of 100 subjects was found to be 16.4 +/- 5.4 mg/dl. The assay can be performed on untreated plasma samples which may be stored frozen (-20 degrees C) for up to 2 months.  相似文献   

4.
Recently, we determined the apolipoprotein E (apoE) phenotype distribution in 2,000 randomly selected 35-year-old male individuals by slab gel isoelectric focusing of delipidated plasma samples, followed by immunoblotting using anti-apoE antiserum. These blots have been successfully re-used for immunovisualization of apoA-IV isoelectric focusing patterns. In a population sample of 1,393 individuals, four distinct apoA-IV isoforms were detected, encoded by the alleles A-IV*0, A-IV*1, A-IV*2, and A-IV*3 with gene frequencies of 0.002, 0.901, 0.079, and 0.018, respectively. The mean of plasma cholesterol, triglyceride, apoB and E levels did not differ significantly among the different apoA-IV phenotype groups. For these lipoprotein parameters, less than 0.1% of the total phenotypic variance could be accounted for by the APOA-IV gene locus. Our results did not show any effect of apoA-IV polymorphism on plasma apoA-I levels nor could we find any correlation between plasma levels of apoA-I and apoA-IV within the different apoA-IV phenotype groups. The plasma level of apoA-IV in subjects bearing the A-IV*3 allele is significantly lower than in subjects without the A-IV*3 allele (5 mg/dl versus 14 mg/dl). We therefore conclude that, in contrast to the apoE polymorphism, the polymorphism at the APOA-IV locus does not influence any of the levels of the lipoprotein parameters considered except apoA-IV.  相似文献   

5.
Plasma apolipoprotein A-IV (apoA-IV) levels are found elevated in hypertriglyceridemic patients. However, the relationship between plasma apoA-IV level and postprandial lipemia is not well known and remains to be elucidated. Thus, our objective was to study the relationship between plasma apoA-IV and postprandial TG after an oral fat load test (OFLT). Plasma apoA-IV was measured at fast and during an OFLT in 16 normotriglyceridemic, normoglucose-tolerant android obese subjects (BMI = 34.6 +/- 2.9 kg/m(2)) and 30 normal weight controls (BMI = 22.2 +/- 2.3 kg/m(2)). In spite of not statistically different fasting plasma TG levels in controls and obese patients, the former group showed an altered TG response after OFLT, featuring increased nonchylomicron TG area under the curve (AUC) compared with controls (516 +/- 138 vs. 426 +/- 119 mmol/l x min, P < 0.05). As compared to controls, obese patients showed increased apoA-IV levels both at fast (138.5 +/- 22.4 vs. 124.0 +/- 22.8 mg/l, P < 0.05) and during the OFLT (apoA-IV AUC: 79,833 +/- 14,281 vs. 68,176 +/- 17,463 mg/l x min, P < 0.05). Among the whole population studied, as among the control and obese subgroups, fasting plasma apoA-IV correlated significantly with AUC of plasma TG (r = 0.60, P < 0.001), AUC of chymomicron TG (r = 0.45, P < 0.01), and AUC of nonchylomicron TG (r = 0.62, P < 0.001). In the multivariate analysis, fasting apoA-IV level constituted an independent and highly significant determinant of AUC of plasma TG, AUC of chymomicron TG, AUC of nonchylomicron TG, and incremental AUC of plasma TG. In conclusion, we show a strong link between fasting apoA-IV and postprandial TG metabolism. Plasma fasting apoA-IV is shown to be a good marker of TG response after an OFLT, providing additional information on post-load TG response in conjunction with other known factors such as fasting TGs.  相似文献   

6.
Increased plasma concentrations of apolipoprotein A-IV (apoA-IV) in chronic renal disease suggest a metabolic role of the kidney for this antiatherogenic protein. Therefore, we investigated patients with various forms of proteinuria and found increased serum concentrations of apoA-IV in 124 nephrotic patients compared with 274 controls (mean 21.9 +/- 9.6 vs. 14.4 +/- 4.0 mg/dl; P < 0.001). Decreasing creatinine clearance showed a strong association with increasing apoA-IV levels. However, serum albumin levels significantly modulated apoA-IV levels in patients with low creatinine clearance, resulting in lower levels of apoA-IV in patients with low compared with high albumin levels (21.4 +/- 8.6 vs. 29.2 +/- 8.4 mg/dl; P = 0.0007). Furthermore, we investigated urinary apoA-IV levels in an additional 66 patients with a wide variety of proteinuria and 30 controls. Especially patients with a tubular type of proteinuria had significantly higher amounts of apoA-IV in urine than those with a pure glomerular type of proteinuria and controls (median 45, 14, and 0.6 ng/mg creatinine, respectively). We confirmed these results in affected members of a family with Dent's disease, who are characterized by an inherited protein reabsorption defect of the proximal tubular system. In summary, our data demonstrate that the increase of apoA-IV caused by renal impairment is significantly modulated by low levels of serum albumin as a measure for the severity of the nephrotic syndrome. From this investigation of apoA-IV in urine as well as earlier immunohistochemical studies, we conclude that apoA-IV is filtered through the normal glomerulus and is subsequently reabsorbed mainly by proximal tubular cells.  相似文献   

7.
Metabolism of apolipoprotein A-IV in rat   总被引:1,自引:0,他引:1  
The metabolism of apolipoprotein A-IV (apo-IV) has been investigated in the rat. In this animal species, apoA-IV is a major protein constituent of plasma HDL and lymph chylomicron. The apolipoprotein is also present in the lipoprotein-deficient fraction (LDF) of plasma and lymph. In vivo studies with the radioiodinated protein showed the apoA-IV does not exchange freely between HDL and LDF and that LDF apoA-IV had a faster catabolism than HDL apoA-IV. ApoA-IV in chylomicrons is a direct precursor of apoA-IV in plasma HDL but not of that in LDF. On the other hand lymph LDF apoA-IV is an important precursor of plasma LDF apoA-IV. Transfer of apoA-IV from plasma to lymph is negligible, and since most of apoA-IV in lymph is present in LDF, we speculate that LDF apoA-IV is the major apoA-IV secretory product of the intestine. Studies aimed at identifying the site of catabolism of apoA-IV utilizing either radioiodinated or [14C]sucrose labelled apoA-IV, gave results consistent with the view that the liver plays a major role. When tested, human apoA-IV behaved in vivo in rat as the autologous protein. These findings, together with others previously published (Ghiselli, G. et al. (1987) J. Lipid Res. 27, 813-827), support the conclusion that the plasma metabolism of apoA-IV is remarkably similar in rat and human. We speculate that in mammals the rapid plasma catabolism of apoA-IV is mediated by an efficient uptake by the liver.  相似文献   

8.
Intestinal lipid absorption is associated with marked increases in the synthesis and secretion of apolipoprotein A-IV (apoA-IV) by the small intestine. Whether the increased intestinal apoA-IV synthesis and secretion results from increased fat uptake, increased cellular triglyceride (TG) content, or increased secretion of TG-rich lipoproteins by the enterocytes is unknown. Previous work from this laboratory has shown that a hydrophobic surfactant, Pluronic L-81 (L-81), is a potent inhibitor of intestinal formation of chylomicrons (CM), without reducing fat uptake or re-synthesis to TG. Furthermore, this inhibition can be reversed quickly by the cessation of L-81 infusion. Thus L-81 offers a unique opportunity to study the relationship between lymphatic TG, apoA-I and A-IV secretion. In this study, we studied the lymphatic transport of TG, apoA-I, and apoA-IV during both the inhibitory phase (L-81 infused together with lipid) and the subsequent unblocking phase (saline infusion). Two groups of lymph fistula rats were used, the control and the experimental rats. In the experimental rats, a phosphate-buffered taurocholate-stabilized emulsion containing 40 mumol [3H]triolein, 7.8 mumol of phosphatidylcholine, and 1 mg L-81 per 3 ml was infused at 3 ml/h for 8 h. This was then replaced by glucose-saline infusion for an additional 12 h. The control rats received the same lipid emulsion as the experimental rats, but without L-81 added, for 8 h. Lymph lipid was determined both by radioactivity and by glyceride-glycerol determination, and the apoA-I and apoA-IV concentrations were determined by rocket electroimmunophoresis assay. L-81 inhibited the rise in lymphatic lipid and apoA-IV output in the experimental rats after the beginning of lipid + L-81 infusion. Upon cessation of L-81 infusion, the mucosal lipid accumulated as a result of L-81 treatment was rapidly cleared into lymph as CM. This was associated with a marked increase in apoA-IV output; the maximal output was about 3 times that of the fasting level. There was a time lag of 4-5 h between the peak lymph lipid output and the peak lymph apoA-IV output during the unblocking phase in the experimental rats. There was also a comparable time lag between the maximal lipid and apoA-IV outputs in the control animals. Incorporation studies using [3H]leucine showed that apoA-IV synthesis was not stimulated during lipid + L-81 infusion, perhaps explaining the lack of increase in lymphatic A-IV secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Plasma metabolism of apolipoprotein A-IV in humans   总被引:5,自引:0,他引:5  
As assessed by molecular sieve chromatography and quantitation by a specific radioimmunoassay, apoA-IV is associated in plasma with the triglyceride-rich lipoproteins, to a high density lipoprotein (HDL) subfraction of smaller size than HDL3, and to the plasma lipoprotein-free fraction (LFF). In this study, the turnover of apoA-IV associated to the triglyceride-rich lipoproteins, HDL and LFF was investigated in vivo in normal volunteers. Human apoA-IV isolated from the thoracic duct lymph chylomicrons was radioiodinated and incubated with plasma withdrawn from normal volunteers after a fatty meal. Radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, HDL, and LFF were then isolated by chromatography on an AcA 34 column. Shortly after the injection of the radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, most of the radioactivity could be recovered in the HDL and LFF column fractions. On the other hand, when radioiodinated apoA-IV-labeled HDL or LFF were injected, the radioactivity remained with the originally injected fractions at all times. The residence time in plasma of 125I-labeled apoA-IV, when injected in association with HDL or LFF, was 1.61 and 0.55 days, respectively. When 125I-labeled apoA-IV was injected as a free protein, the radioactivity distributed rapidly among the three plasma pools in proportion to their mass. The overall fractional catabolic rate of apoA-IV in plasma was measured in the three normal subjects and averaged 1.56 pools per day. The mean degradation rate of apoA-IV was 8.69 mg/kg X day. The results are consistent with the conclusions that: apoA-IV is present in human plasma in three distinct metabolic pools; apoA-IV associated with the triglyceride-rich lipoproteins is a precursor to the apoA-IV HDL and LFF pools; apoA-IV in LFF is not a free protein and its turnover rate is faster than that of apoA-IV in HDL; since no transfer of apoA-IV from the HDL or the LFF occurs, these pools may represent a terminal pathway for the catabolism of apoA-IV; and the catabolism of apoA-IV in HDL is dissociated from that of apoA-I although both apoproteins may reside on the same lipoprotein particles.  相似文献   

10.
Conformational properties of human and rat apolipoprotein A-IV   总被引:1,自引:0,他引:1  
Apolipoprotein A-IV has been isolated from four sources: human and rat lymph and plasma. Conformational properties of the rat and human apoA-IV in solution and denaturation changes induced by guanidine hydrochloride (Gnd X HCl) were studied using circular dichroic and fluorescence spectroscopy, and analytical sedimentation equilibrium ultracentrifugation. We have shown that both rat and human apoA-IV have similar secondary structure with negative maxima in the circular dichroic spectra at 222 nm and 207 nm. Furthermore, we have found no significant difference in the alpha-helical content of the apoA-IV from rat plasma (33%), rat lymph (37%), human plasma (35%), or human lymph (35%). Our denaturation studies with Gnd X HCl demonstrated reversibility and the fact that each apoA-IV had a tendency to self-associate in solution and the self-association could be disrupted by low concentrations of Gnd X HCl (less than or equal to 0.4 M). Unfolding of the secondary structure of each apoA-IV occurred at higher concentrations of Gnd X HCl (midpoint less than or equal to 1.0 M). The apparent free energy of denaturation of the four apoA-IV proteins calculated from changes in the circular dichroic spectra upon addition of increasing concentrations of Gnd X HCl varied in a range from 3.0 to 4.2 kcal/mol. The fluorescence experiments revealed that apoA-IV from all sources had a maximum fluorescence emission at 342.5 nm, which shifted to the red region upon addition of increasing concentrations of Gnd X HCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Hyperlipoproteinemia in fasting ponies   总被引:1,自引:0,他引:1  
Ponies fasted for up to 8 days showed, both by agarose electrophoresis and preparative ultracentrifugation, the appearance of a pre-beta-migrating, very low density lipoprotein fraction in plasma. This lipoprotein differs from the very low density lipoprotein found in humans and rats in that it contains a relatively smaller amount of total cholesterol, 85% of which is present in the unesterified form. By the 8th day of fasting, plasma triglyceride concentrations had increased from a prefasting level of 20 mg/dl to as high as 1000 mg/dl. The increase in plasma lipid concentrations as a result of fasting was highly variable. Accumulation of plasma cholesterol and triglyceride after injection of Triton WR 1339 was not related to the degree of fasting hyperlipidemia. This suggests that the hyperlipoproteinemia of fasting may result from an impaired utilization of very low density lipoproteins.  相似文献   

12.
Factors influencing the association of apoA-IV with high density lipoproteins (HDL) were investigated by employing a crossed immunoelectrophoresis assay to estimate the distribution of rat plasma apoA-IV between the lipoprotein-free and HDL fractions. Incubation of rat plasma at 37 degrees C resulted in the complete transfer of lipoprotein-free apoA-IV to HDL within 45 min. When plasma obtained from fat-fed rats was incubated at 37 degrees C in the presence of postheparin plasma as a source of lipolytic activity, there was a complete transfer of HDL apoA-IV to the lipoprotein-free fraction within 30 min. With extended incubation (120 min), lipoprotein-free apoA-IV began to transfer back to HDL. Similar patterns of apoA-IV redistribution were seen when plasma from fat-fed rats was incubated with postheparin heart perfusate or was perfused through a beating heart. Incubations conducted with plasma obtained from fasted rats showed similar but markedly attenuated apoA-IV responses. Similar observations were found in vivo following intravenous heparin administration. To determine whether the transfer of apolipoproteins from triglyceride-rich lipoproteins to HDL was partially responsible for the lipolysis-induced redistribution of apoA-IV, purified apoA-I, apoE, and C apolipoproteins were added to plasma from fasted rats. When added to plasma, all of the apolipoproteins tested displaced apoA-IV from HDL in a dose-dependent manner. Conversely, apolipoproteins were removed from HDL by adding Intralipid to plasma from fasted rats. With increasing concentrations of Intralipid, there was a progressive loss of HDL apoC-III and a progressive increase in HDL apoA-IV. Intravenous injection of a bolus of Intralipid to fasted rats resulted in a transient decrease of HDL apoC-III and concomitant increase in HDL apoA-IV. From these studies, we conclude that the binding of apoA-IV to HDL is favored under conditions that result in a relative deficit of HDL surface components, such as following cholesterol esterification by LCAT or transfer of apolipoproteins to nascent triglyceride-rich lipoproteins.  相似文献   

13.
The immunoreactivity of human plasma apolipoprotein C-II was investigated using a specific radioimmunoassay. In whole plasma, the mean value quantitated was 2.21 ± 0.415 mg/dl, while in delipidated plasma, a mean value of 3.84 ± 1.186 mg/dl was obtained, suggesting that the antigenic sites of the apolipoprotein were not fully detected in unmodified plasma by our antibody preparation. Two detergents, Tween-20 and Triton X-100, were studied to determine if they could enhance the immunoreactivity of apolipoprotein C-II in whole plasma. At concentrations of 0.012–0.06%, Tween-20 markedly increased the immunoreactivity of whole plasma, but not of delipidated plasma, indicating that antigenic sites of plasma apolipoprotein C-II has been exposed by Tween-20. In contrast, Triton X-100 had no effect on the immunoreactivity of whole plasma apolipoprotein C-II. A radioimmunoassay conducted in the presence of 0.06% Tween-20, resulted in a mean value in whole plasma (3.39 ± 1.11 mg/dl) that was not significantly different from that obtained when the assay was done on delipidated samples. The immunoreactivity of VLDL apolipoprotein C-II was also drastically enhanced following lipolysis by bovine milk lipoprotein lipase, supporting the hypothesis that antigenic sites are masked by the lipids. Finally, the mechanism responsible for the effect of Tween-20 on apolipoprotein C-II immunoreactivity was investigated. The results obtained from circular dichroism and ultracentrifugation suggest that the detergent may dissociate the apolipoprotein from lipoprotein particles, thus fully exposing the antigenic sites for reaction with antibodies.  相似文献   

14.
A sensitive and rapid immunological detection method was used to screen for apolipoprotein A-IV variants. Antibodies to human lymph chylomicron or plasma apolipoprotein A-IV, and plasma apolipoprotein A-I were raised in rabbits. Antibodies to apolipoprotein A-I or apolipoprotein A-IV were shown to be monospecific to their respective antigens by reactivity against human chylomicron apolipoproteins by immunoblot analysis. Plasma samples were obtained from dyslipidemic subjects from the Lipid Research Clinic of Columbia University. The plasma samples were isoelectrically focused (pH 4-6) on slab gels. Plasma proteins were then transferred to nitrocellulose paper for immunoblotting. Apolipoprotein A-IV polymorphism was determined by specific immunological detection of apolipoprotein A-IV. Identical apolipoprotein A-IV isoprotein patterns were observed when either antibodies to lymph or plasma apolipoprotein A-IV were used for immunoblotting. All the dyslipidemic plasma samples screened contained the two major and one or two minor isoproteins of normal plasma. In two instances, new apolipoprotein A-IV variants having an additional isoform were detected. One subject was hypertriglyceridemic (triacylglycerols = 342 mg/dl, cholesterol = 251 mg/dl) and had an additional major acidic apolipoprotein A-IV isoform. Another subject with mild hypocholesterolemia (triacylglycerols = 209 mg/dl, cholesterol = 120 mg/dl) was found to have additional major and minor basic apolipoprotein A-IV isoforms. The specificity of this technique allows detection of polymorphism of apolipoproteins of similar isoelectric points by use of a single dimension isoelectric focusing gel. This technique also demonstrated the presence of altered apolipoprotein A-I isoforms in the plasma of a patient with Tangier disease. These isoforms were previously identified as isoforms 2 and 4 of normal plasma by use of two-dimensional gel electrophoresis. However, by use of this new technique and careful evaluation of previously published two-dimensional gels, we now identify these apolipoprotein A-I isoforms as being more acidic than those of normal plasma.  相似文献   

15.
The kinetics of apolipoprotein A-IV associated with high density lipoproteins (HDL) of plasma from fasting human subjects was followed for 15 days in five healthy normolipidemic volunteers. Purified apoA-IV and apoA-I were radioiodinated, respectively, with 125I and 131I, incubated in vitro with normal HDL, isolated at density 1.250 g/ml, and finally reinjected intravenously as HDL-125I-labeled apoA-IV and HDL-131I-labeled apoA-I. Blood samples were withdrawn at regular intervals for 15 days, and 24-h urine samples were collected. More than 93% (93.5 +/- 0.9%) of apoA-IV was recovered in apoA-I-containing lipoprotein particles after affinity chromatography on an anti-apoA-I column and 69.7 +/- 4.8% was bound to apoA-II in apoA-I:A-II particles separated on an anti-apoA-II column. 125I-labeled apoA-IV showed a much faster decay than 131I-labeled apoA-I for the first 5 days and thereafter the curves became parallel. Urinary/plasma ratios (U/P) for the 125I-labeled parallel. Urinary/plasma ratios (U/P) for the 125I-labeled apoA-IV were much higher than those for 131I-labeled apoA-I for the first days, but the U/P curves became parallel for the last 7 days, suggesting heterogeneity of apoA-IV metabolism. A heterogeneous multicompartmental model was constructed to describe the metabolism of lipoprotein particles containing apoA-IV and apoA-I and to calculate the kinetic parameters, fitting simultaneously all plasma and urine data for both tracers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Apolipoprotein A-IV (apoA-IV) is a 46 kDa glycoprotein that associates with triglyceride-rich and high density lipoproteins. Blood levels of apoA-IV generally correlate with triglyceride levels and are increased in diabetic patients. This study investigated the mechanisms regulating the in vivo expression of apoA-IV in the liver and intestine of mice in response to changes in nutritional status. Fasting markedly increased liver and ileal apoA-IV mRNA and plasma protein concentrations. This induction was associated with increased serum glucocorticoid levels and was abolished by adrenalectomy. Treatment with dexamethasone increased apoA-IV expression in adrenalectomized mice. Marked increases of apoA-IV expression were also observed in two murine models of diabetes. Reporter gene analysis of the murine and human apoA-IV/C-III promoters revealed a conserved cooperative activation by the hepatic nuclear factor-4 alpha (HNF-4 alpha) and the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) but no evidence of a direct regulatory role for the glucocorticoid receptor. Consistent with these in vitro data, induction of apoA-IV in response to fasting was accompanied by increases in HNF-4 alpha and PGC-1 alpha expression and was abolished in liver-specific HNF-4 alpha-deficient mice. Together, these results indicate that the induction of apoA-IV expression in fasting and diabetes likely involves PGC-1 alpha-mediated coactivation of HNF-4 alpha in addition to glucocorticoid-dependent actions.  相似文献   

17.
Vitamin A levels in tissues of 20 normal adult hamsters on a standard diet were measured colorimetrically. No significant difference between male and female animals was found for any of the tissues sampled. The mean vitamin A value for blood plasma in 20 animals was 53.4 micrograms/dl. Mean values for liver, kidneys, flank skin and cheek pouch were 813, 1.29, 1.84 and 1.31 mg/g wet weight, respectively. The vitamin assay was less suitable for small organs such as trachea.  相似文献   

18.
The plasma levels of fibronectin (Fn) have been measured in normal subjects and in patients with thyroid diseases. The mean plasma Fn levels in 62 normal adults was 32.0 +/- 6.0 mg/dl, whereas it was elevated to 62.6 +/- 16.1 mg/dl (mean +/- SD) in 25 patients with hyperthyroidism and decreased to 19.2 +/- 8.0 mg/dl in 9 patients with hypothyroidism. The 9 patients with simple goiter have normal values of 29.1 +/- 8.0 mg/dl. With the administration of anti-thyroid drugs, plasma Fn levels normalized, with a time lag, in parallel with normalization of the thyroid function. Positive correlation was obtained between Fn levels and serum levels of triiodothyronine (T3) and thyroxine (T4). The present findings indicate that measurement of plasma Fn both in the basal state and during treatment provides evidence of altered Fn metabolism in thyroid diseases and serves to follow up the effect of treatment.  相似文献   

19.
The dried sap of the aloe plant (aloes) is one of several traditional remedies used for diabetes in the Arabian peninsula. Its ability to lower the blood glucose was studied in 5 patients with non-insulin-dependent diabetes and in Swiss albino mice made diabetic using alloxan. During the ingestion of aloes, half a teaspoonful daily for 4-14 weeks, the fasting serum glucose level fell in every patient from a mean of 273 +/- 25 (SE) to 151 +/- 23 mg/dl (p less than 0.05) with no change in body weight. In normal mice, both glibenclamide (10 mg/kg twice daily) and aloes (500 mg/kg twice daily) induced hypoglycaemia after 5 days, 71 +/- 6.2 and 91 +/- 7.6 mg/dl, respectively, versus 130 +/- 7 mg/dl in control animals (p less than 0.01); only glibenclamide was effective after 3 days. In the diabetic mice, fasting plasma glucose was significantly reduced by glibenclamide and aloes after 3 days. Thereafter only aloes was effective and by day 7 the plasma glucose was 394 +/- 22.0 versus 646 +/- 35.9 mg/dl, in the controls and 726 +/- 30.9 mg/dl in the glibenclamide treated group (p less than 0.01). We conclude that aloes contains a hypoglycaemic agent which lowers the blood glucose by as yet unknown mechanisms.  相似文献   

20.
This study investigated the effect of length of fasting time on plasma total cholesterol response of male Mongolian gerbils (Meriones unguiculatus). Plasma cholesterol levels from fed and fasted gerbils were also compared with those reported for humans under similar metabolic states. Plasma total cholesterol response showed a significant quadratic relationship with time over a 15-hour period. Between 6 and 9 hours of fasting (the time during which plasma triglyceride concentration became relatively constant), the average plasma total cholesterol concentration was 178 mg/dl, compared with a zero hour (fed) cholesterol level of 265 mg/dl. The difference in plasma cholesterol levels observed in fed and fasted gerbils is unlike what has been reported for humans. Results from most human studies show no differences in plasma total cholesterol concentrations for fed and fasted subjects. Failure to consider species differences in metabolic responses may have implications when results from animal experiments are extrapolated to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号