首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is an ever increasing flood of structural information and over 1,000 protein structures have been deposited in the Protein Data Base between January 1999 and January 2000. Major advances in the past year in the field of redox enzymes have included the structures of nitric oxide synthases in ligand-free and ligand-bound complexes, and the determination of the multi-subunit mitochondrial bc1 complex. The first,structures of flavocytochrome have also appeared providing insight into novel electron and proton pathways.  相似文献   

3.
4.
A new type of substrate for enzyme detection has been developed. The substrate is non-chromogenic and is used in an assay method based on electrode adsorption. The rate of change in the electric capacitance of the electrode is monitored and taken as a measure of the substrate adsorption. Substrate adsorption is in turn proportional to substrate bulk concentration and thus subject to changes by enzymes. The new substrate introduces a new concept in enzyme detection: as it is non-chromogenic it may contain appropriate amino acids on both sides of the bond subject to enzymatic cleavage.  相似文献   

5.
A comparative study was performed to evaluate the signal amplification strategies in electrochemical affinity sensing, which included the direct electron transfer and diffusible-group mediated electron transfer between label enzymes that were specifically bound to target proteins and chemically modified electrode surfaces. As a platform surface for affinity recognition reactions, a double functionalized poly(amido amine) dendrimer monolayer that was modified with ferrocene and biotin groups was constructed on a gold surface. With the chemically modified electrode, a model affinity sensing with avidin was investigated. The advantages of adopting the diffusible-group mediated signaling strategy were demonstrated in terms of signal sensitivity and stability.  相似文献   

6.
The root-zone of wetland rice was monitored in a paddy soil throughout a vegetation period with the aid of a rhizotron experiment. For this purpose (a) digital images of the root-zone were taken daily, and (b) the redox potential was measured in situ every day. The images were processed by image analysis in order to display areas of oxidation and reduction in the soil. Therefore, thresholds were set to simplify the localization and quantification of discrete areas which were colourized due to the redox potential. Both, images and measured redox potentials, provide the basis for the visualization of the root and redox dynamics in the root-zone. The anaerobic root-zone of flooded paddy soils is significantly influenced by the aerenchymal transport of oxygen to rice roots. The release of oxygen into the rhizosphere, which causes different patterns of oxidized and reduced areas in the course of the vegetation period, also affects microbial communities such as methane producing archaea or methane oxidizing bacteria. The visualization of redox dynamics may, therefore, be useful to localize potential hotspots for the microorganisms in the root-zone of paddy soils. The reduced and oxidized conditions changed spatiotemporally. Oxidized areas were mostly found in the surrounding of active roots and in a distinct layer next to the soil surface. Reduced areas shifted from beneath the oxidized surface layer into sparsely-rooted soil. The ratio of the analyzed oxidized and reduced areas was oscillating with increasing intensity throughout the monitored vegetation period.  相似文献   

7.
8.
9.
10.
Lanthanum hydroxide nanowires modified carbon paste electrode (LNW/CPE) exhibiting an electrocatalytic response toward the oxidation of mefenamic acid (MFA) is described. The catalytic action of the LNW/CPE on the oxidation of MFA via one-electron and one-proton transfer is attributed to the formation of the porous construction and the increase of efficient surface of the electrode due to the adulteration of LNW with carbon powders. Using the LNW/CPE, a linear sweep voltammetric method for the determination of MFA and other drugs with diphenylamine parent is proposed. A linear range of 2.0 x 10(-11) to 4.0 x 10(-9)mol L(-1) is obtained along with a detection limit of 6.0 x 10(-12)mol L(-1).  相似文献   

11.
Mutation detection by electrocatalysis at DNA-modified electrodes   总被引:14,自引:0,他引:14  
Detection of mutations and damaged DNA bases is important for the early diagnosis of genetic disease. Here we describe an electrocatalytic method for the detection of single-base mismatches as well as DNA base lesions in fully hybridized duplexes, based on charge transport through DNA films. Gold electrodes modified with preassembled DNA duplexes are used to monitor the electrocatalytic signal of methylene blue, a redox-active DNA intercalator, coupled to [Fe(CN)6]3-. The presence of mismatched or damaged DNA bases substantially diminishes the electrocatalytic signal. Because this assay is not a measure of differential hybridization, all single-base mismatches, including thermodynamically stable GT and GA mismatches, can be detected without stringent hybridization conditions. Furthermore, many common DNA lesions and "hot spot" mutations in the human p53 genome can be distinguished from perfect duplexes. Finally, we have demonstrated the application of this technology in a chip-based format. This system provides a sensitive method for probing the integrity of DNA sequences and a completely new approach to single-base mismatch detection.  相似文献   

12.
The electrochemistry of the redox proteins, cytochrome c, cytochrome b5, plastocyanin and ferredoxin at modified gold electrodes has been examined on the basis that electron transfer takes place at electroactive sites which are microscopic in size. Using this model, it is now proposed that electrochemistry of these proteins occurs at suitably modified sites with fast rates at potentials near the standard redox potential. The microscopic model implies that redox proteins and enzymes take part in fast electron transfer at specific sites on the electrode, other sites being completely ineffective. This form of molecular recognition, i.e. the ability to discriminate between the different sites on an electrode surface, mimics homogeneous redox reactions wherein redox active proteins 'recognize' their biological partners in a very specific sense. Previously, protein electrochemistry has been interpreted via use of a macroscopic model in which the proteins are transported to the electrode surface by linear diffusion followed by quasi-reversible or irreversible electron transfer to the electrode surface. The microscopic model, which assumes that the movement of the protein occurs predominantly by radial diffusion to very small sites, would appear to explain the data more satisfactorily and be consistent with biologically important, homogeneous redox reactions which are known to be fast.  相似文献   

13.
The electrocatalytic reduction of H2O2 was studied for carbonaceous electrodes modified with horse-radish peroxidase (HRP), microperoxidase (MP), and lactoperoxidase (LP). The carbonaceous electrodes were of three different graphites, carbon and glassy carbon. The peroxidase modified electrode was inserted as the working electrode in a flow through amperometric cell of the wall jet type and connected to a flow injection system. The effect of different pretreatments of the electrode surface prior to adsorption of the enzyme was investigated. Heating the electrodes in a muffle furnace at 700°C for 1.5 min was found to yield the highest currents. The electrocatalytic current for HRP-modified electrodes starts at about +600 mV vs. Ag/AgCl (pH 7.0) and reaches a maximum value at about −200 mV. For MP- and LP-modified electrodes the currents start at a lower potential (≈ 300 mV). For the best electrode material for HRP, straight calibration curves were obtained between 1 and 500 μM H2O2 at 0 mV. The mechanism for the electron transfer from the electrode to the adsorbed peroxidase is discussed. Deliberate modification of the electrode surface with quinoid type electroactive species was found to mediate the reaction. It is proposed that spontaneously occurring electrochemically active surface groups mediate the electron transfer to the adsorbed enzyme. However, a contribution to the observed current from a direct electron transfer cannot be ruled out.  相似文献   

14.
15.
16.
17.
The cytochromes P450 (P450s) are a broad class of heme b-containing mono-oxygenase enzymes. The vast majority of P450s catalyse reductive scission of molecular oxygen using electrons usually derived from coenzymes (NADH and NADPH) and delivered from redox partner proteins. Evolutionary advantages may be gained by fusion of one or more redox partners to the P450 enzyme in terms of e.g. catalytic efficiency. This route was taken by the well characterized flavocytochrome P450BM3 system (CYP102A1) from Bacillus megaterium, in which soluble P450 and cytochrome P450 reductase enzymes are covalently linked to produce a highly efficient electron transport system for oxygenation of fatty acids and related molecules. However, genome analysis and ongoing enzyme characterization has revealed that there are a number of other novel classes of P450–redox partner fusion enzymes distributed widely in prokaryotes and eukaryotes. This review examines our current state of knowledge of the diversity of these fusion proteins and explores their structural composition and evolutionary origins.  相似文献   

18.
Based on the idea that proteins can be stabilized by a decrease in the thermodynamically unfavorable contact of the hydrophobic surface clusters with water, alpha-chymotrypsin (CT) was acylated with carboxylic acid anhydrides or re-ductively alkylated with aliphatic aldehydes. Modification of CT with hydrophilic reagents leads to 100-1000-fold increase in stability against the irreversible thermoinactivation. The correlation holds: the greater the hydrophilization increment brought about by the modification, the higher is the protein thermostability. After some limiting value, however, a further increase in hydrophilicity does not change thermostability.It follows from the dependence of the thermoinactivation rate constants on temperature that for hydrophilized CT there is the conformational transition at 55-65 degrees C into an unfolded state in which inactivation is much slower than that of the low-temperature conformation. The thermodynamic analysis and fluorescent spectral data confirm that the slow inactivation of hydrophilized CT at high temperatures proceeds via a chemical mechanism rather than Incorrect refolding operative for both the native and low-temperature form of the modified enzyme. Hence, the hydrophilization stabilizes the unfolded high-temperature conformation by eliminating the incorrect refolding. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
Direct and indirect electron transfer between electrodes and redox proteins   总被引:4,自引:0,他引:4  
The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides. Careful design of electrode surfaces and electrolyte conditions are required for the attainment of rapid and reversible protein-electrode interaction. The electron transfer reactions of more complex systems, such as redox enzymes, are now being examined. The 'well-behaved' electrochemistry of redox proteins can be usefully exploited by coupling the electrode reaction to enzymes for which the redox proteins act as cofactors. In systems where direct electron transfer is very slow, small electron carriers, or mediators, may be employed to enhance the rate of electron exchange with the electrode. The organometallic compound ferrocene and its derivatives have proved particularly effective in this role. A new generation of electrochemical biosensors employs ferrocene derivatives as mediators.  相似文献   

20.
Using the concept of electrogenerated chemiluminescence (ECL), a sensitive analytical method for the determination of carbidopa is described. Electro‐oxidation of carbidopa on the surface of a graphene oxide (GO)‐modified gold electrode (GE) leads to enhancement of the weak emission of oxidized luminol. Under optimum experimental conditions, the ECL signal increases linearly with increasing carbidopa concentrations over a range of 1.0 × 10‐9–1.7 × 10‐7 M, with a detection limit of 7.4 × 10‐10 M. The proposed ECL method was successfully used for the determination of carbidopa in urine samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号