首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang L  Colón W 《Biochemistry》2007,46(18):5562-5569
Serum amyloid A (SAA) is a highly conserved acute phase reactant protein, and its concentration in serum can increase up to approximately 1000 times after an inflammatory stimuli. SAA is mainly associated with high-density lipoproteins in serum, and its main function appears to involve cholesterol transport and lipid metabolism. However, SAA has also been associated with many other functions and a number of diseases, although these potential links remain poorly understood. The three-dimensional structure of SAA is not known, but we have shown that murine SAA2.2 can exist in solution as a marginally stable hexamer, which at 37 degrees C dissociates to a monomeric species that misfolds irreversibly and self-assembles into amyloid fibrils. Thus, the structure and function of SAA in vivo appear to be modulated when it binds to other proteins or small ligands. Herein, the effect of copper (Cu2+), zinc (Zn2+), and calcium (Ca2+) on the structure and stability of SAA2.2 in aqueous solution was examined using various probes of quaternary, tertiary, and secondary structure. At different concentrations of metals, including those found in the serum, the results show that the structure and stability of SAA2.2 are differently affected depending on the metal type and concentration. Copper (10-100 microM) was found to shift the equilibrium from hexamer to monomer without affecting significantly the stability of the tertiary and secondary structure of SAA2.2. In contrast, zinc (1-10 microM) bound to SAA2.2 and stabilized its quaternary, tertiary, and secondary structure. Calcium (1-10 mM) destabilized all elements of SAA2.2 structure and induced its aggregation at 10 mM. Complete aggregation of SAA2.2 was also observed when it was incubated with 1 mM Cu2+ or Zn2+, further demonstrating the tenuous structure and stability of SAA2.2. Thus, these results suggest that the many functional and pathological roles attributed to SAA may rely on its precarious structure, modulated by its interaction with ligands under homeostasis conditions and during the acute phase response.  相似文献   

2.
For nearly four decades, the formation of amyloid fibrils by the inflammation-related protein serum amyloid A (SAA) has been pathologically linked to the disease amyloid A (AA) amyloidosis. However, here we show that the nonpathogenic murine SAA2.2 spontaneously forms marginally stable amyloid fibrils at 37 °C that exhibit cross-beta structure, binding to thioflavin T, and fibrillation by a nucleation-dependent seeding mechanism. In contrast to the high stability of most known amyloid fibrils to thermal and chemical denaturation, experiments monitored by glutaraldehyde cross-linking/SDS-PAGE, thioflavin T fluorescence, and light scattering (OD(600)) showed that the mature amyloid fibrils of SAA2.2 dissociate upon incubation in >1.0 M urea or >45 °C. When considering the nonpathogenic nature of SAA2.2 and its ~1000-fold increased concentration in plasma during an inflammatory response, its extreme in vitro amyloidogenicity under physiological-like conditions suggest that SAA amyloid might play a functional role during inflammation. Of general significance, the combination of methods used here is convenient for exploring the stability of amyloid fibrils that are sensitive to urea and temperature. Furthermore, our studies imply that analogous to globular proteins, which can possess structures ranging from intrinsically disordered to extremely stable, amyloid fibrils formed in vivo might have a broader range of stabilities than previously appreciated with profound functional and pathological implications.  相似文献   

3.
Human serum amyloid A (SAA) is a precursor protein of the amyloid fibrils that are responsible for AA amyloidosis. Of the four human SAA genotypes, SAA1 is most commonly associated with AA amyloidosis. Furthermore, SAA1 has three major isoforms (SAA1.1, 1.3, and 1.5) that differ by single amino acid variations at two sites in their 104-amino acid sequences. In the present study, we examined the effect of amino acid variations in human SAA1 isoforms on the amyloidogenic properties. All SAA1 isoforms adopted α-helix structures at 4 °C, but were unstructured at 37 °C. Heparin-induced amyloid fibril formation of SAA1 was observed at 37 °C, as evidenced by the increased thioflavin T (ThT) fluorescence and β-sheet structure formation. Despite a comparable increase in ThT fluorescence, SAA1 molecules retained their α-helix structures at 4 °C. At both temperatures, no essential differences in ThT fluorescence and secondary structures were observed among the SAA1 isoforms. However, the fibril morphologies appeared to differ; SAA1.1 formed long and curly fibrils, whereas SAA1.3 formed thin and straight fibrils. The peptides corresponding to the central regions of the SAA1 isoforms containing amino acid variations showed distinct amyloidogenicities, reflecting their direct effects on amyloid fibril formation. These findings may provide novel insights into the influence of amino acid variations in human SAA on the pathogenesis of AA amyloidosis.  相似文献   

4.
Amyloid A protein (AA), the major fibril protein in AA-amyloidosis, is an N-terminal cleavage product of the precursor protein, serum amyloid A (SAA). Using mass spectrometry and amino-acid sequencing, we identified and characterized two novel AA protein subsets co-deposited as amyloid fibrils in an patient having AA-amyloidosis associated with rheumatoid arthritis. One of the AA proteins corresponded to positions 2-76 (or 75) of SAA2 alpha and the other corresponded to positions 2-76 (or 75) of known SAA1 subsets, except for position 52 or 57, where SAA1 alpha has valine and alanine and SAA1 beta has alanine and valine in position 52 and 57, respectively, whereas the AA protein had alanine at the both positions. Our findings (1), demonstrate that not only one but two SAA subsets could be deposited together as an AA-amyloid in a single individual and (2), support the existence of a novel SAA1 allotype, i.e., SAA152,57Ala.  相似文献   

5.
Amyloid A protein (AA), the major fibril protein in AA-amyloidosis, is an N-terminal cleavage product of the precursor protein, serum amyloid A (SAA). Using mass spectrometry and amino-acid sequencing, we identified and characterized two novel AA protein subsets co-deposited as amyloid fibrils in an patient having AA-amyloidosis associated with rheumatoid arthritis. One of the AA proteins corresponded to positions 2–76 (or 75) of SAA2α and the other corresponded to positions 2–76 (or 75) of known SAA1 subsets, except for position 52 or 57, where SAA1α has valine and alanine and SAA1β has alanine and valine in position 52 and 57, respectively, whereas the AA protein had alanine at the both positions. Our findings (1), demonstrate that not only one but two SAA subsets could be deposited together as an AA-amyloid in a single individual and (2), support the existence of a novel SAA1 allotype, i.e., SAA152,57Ala.  相似文献   

6.
In Alzheimer's disease and spongiform encephalopathies proteins transform from their native states into fibrils. We find that several amyloid-forming proteins harbor an alpha-helix in a polypeptide segment that should form a beta-strand according to secondary structure predictions. In 1324 nonredundant protein structures, 37 beta-strands with > or =7 residues were predicted in segments where the experimentally determined structures show helices. These discordances include the prion protein (helix 2, positions 179-191), the Alzheimer amyloid beta-peptide (Abeta, positions 16-23), and lung surfactant protein C (SP-C, positions 12-27). In addition, human coagulation factor XIII (positions 258-266), triacylglycerol lipase from Candida antarctica (positions 256-266), and d-alanyl-d-alanine transpeptidase from Streptomyces R61 (positions 92-106) contain a discordant helix. These proteins have not been reported to form fibrils but in this study were found to form fibrils in buffered saline at pH 7.4. By replacing valines in the discordant helical part of SP-C with leucines, an alpha-helix is found experimentally and by secondary structure predictions. This analogue does not form fibrils under conditions where SP-C forms abundant fibrils. Likewise, when Abeta residues 14-23 are removed or changed to a nondiscordant sequence, fibrils are no longer formed. We propose that alpha-helix/beta-strand-discordant stretches are associated with amyloid fibril formation.  相似文献   

7.
The yeast prion Ure2p assembles in vitro into oligomers and fibrils retaining the alpha-helix content and binding properties of the soluble protein. Here we show that the different forms of Ure2p native-like assemblies (dimers, oligomers, and fibrils) are similarly toxic to murine H-END cells when added to the culture medium. Interestingly, the amyloid fibrils obtained by heat treatment of the toxic native-like fibrils appear harmless. Moreover, the Ure2p C-terminal domain, lacking the N-terminal segment necessary for aggregation but containing the glutathione binding site, is not cytotoxic. This finding strongly supports the idea that Ure2p toxicity depends on the structural properties of the flexible N-terminal prion domain and can therefore be considered as an inherent feature of the protein, unrelated to its aggregation state but rather associated with a basic toxic fold shared by all of the Ure2p native-like assemblies. Indeed, the latter are able to interact with the cell surface, leading to alteration of calcium homeostasis, membrane permeabilization, and oxidative stress, whereas the heat-treated amyloid fibrils do not. Our results support the idea of a general mechanism of toxicity of any protein/peptide aggregate endowed with structural features, making it able to interact with cell membranes and to destabilize them. This evidence extends the widely accepted view that the toxicity by protein aggregates is restricted to amyloid prefibrillar aggregates and provides new insights into the mechanism by which native-like oligomers compromise cell viability.  相似文献   

8.
The aggregation of alpha-helix-rich proteins into beta-sheet-rich amyloid fibrils is associated with fatal diseases, such as Alzheimer's disease and prion disease. During an aggregation process, protein secondary structure elements-alpha-helices-undergo conformational changes to beta-sheets. The fact that proteins with different sequences and structures undergo a similar transition on aggregation suggests that the sequence nonspecific hydrogen bond interaction among protein backbones is an important factor. We perform molecular dynamics simulations of a polyalanine model, which is an alpha-helix in its native state and observe a metastable beta-hairpin intermediate. Although a beta-hairpin has larger potential energy than an alpha-helix, the entropy of a beta-hairpin is larger because of fewer constraints imposed by the hydrogen bonds. In the vicinity of the transition temperature, we observe the interconversion of the alpha-helix and beta-sheet states via a random coil state. We also study the effect of the environment by varying the relative strength of side-chain interactions for a designed peptide-an alpha-helix in its native state. For a certain range of side-chain interaction strengths, we find that the intermediate beta-hairpin state is destabilized and even disappears, suggesting an important role of the environment in the aggregation propensity of a peptide.  相似文献   

9.
Amyloidosis is a group of diseases characterized by the extracellular deposition of protein that contains non-branching, straight fibrils on electron microscopy (amyloid fibrils) that have a high content of beta-pleated sheet conformation. Various biochemically distinct proteins can undergo transformation into amyloid fibrils. The precursor protein of amyloid protein A (AA) is the acute phase protein serum amyloid A (SAA). The concentration of SAA in plasma increases up to 1000-fold within 24 to 48 h after trauma, inflammation or infection. Individuals with chronically increased SAA levels may develop AA amyloidosis. SAA has been divided into two groups according to the encoding genes and the source of protein production. These two groups are acute phase SAA (A-SAA) and constitutive SAA (C-SAA). Although the liver is the primary site of the synthesis of A-SAA and C-SAA, extrahepatic production of both SAAs has been observed in animal models and cell culture experiments of several mammalian species and chicken. The functions of A-SAA are thought to involve lipid metabolism, lipid transport, chemotaxis and regulation of the inflammatory process. There is growing evidence that extrahepatic A-SAA formation may play a crucial role in amyloidogenesis and enhances amyloid formation at the site of SAA production.  相似文献   

10.
BACKGROUND: Conformational alteration and fibril formation of proteins have a key role in a variety of amyloid diseases. A simplified model peptide would lead to a better understanding of underlying mechanisms whereby protein misfolding and aggregation occur. Recently, we reported the design of peptides that undergo a self-initiated structural transition from an alpha helix to a beta sheet and form amyloid fibrils. In this study, we focus on two glutamine residues in the peptide, and report a mutational analysis of these residues. RESULTS: A coiled-coil alpha-helix structure bearing a hydrophobic adamantanecarbonyl (Ad) group at the N terminus was designed (parent peptide Ad-QQ). In neutral aqueous solution, the double Gln-->Ala mutant (Ad-AA) underwent the alpha-->beta structural transition within four hours, which was similar to the case of Ad-QQ. In contrast, two kinds of single Gln-->Ala mutant (Ad-QA and Ad-AQ) required three days for the transition. Furthermore, Ad-QQ and Ad-AA formed amyloid fibrils, whereas Ad-QA and Ad-AQ did not. Interestingly, however, Ad-QA and Ad-AQ complementarily assembled into the fibrils when they were mixed. CONCLUSIONS: The Gln-->Ala substitution in the peptide significantly alters the alpha-->beta transitional properties and the ability to form amyloid fibrils. A heterogeneous assembly of two peptide species into the fibrils is also presented. These results suggest that the secondary structural transition and self-assembly into the well-organized fibril may depend strictly on the primary structure, which determines the beta-sheet packing. The results might provide insights into misfolding and fibril formation of disease-associated mutant proteins.  相似文献   

11.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

12.
Inflammation-related (AA) amyloidosis is a severe clinical disorder characterized by the systemic deposition of the acute-phase reactant serum amyloid A (SAA). SAA is normally associated with the high-density lipoprotein (HDL) fraction in plasma, but under yet unclear circumstances, the apolipoprotein is converted into amyloid fibrils. AA amyloid and heparan sulfate (HS) display an intimate relationship in situ, suggesting a role for HS in the pathogenic process. This study reports that HS dissociates SAA from HDLs isolated from inflamed mouse plasma. Application of surface plasmon resonance spectroscopy and molecular modeling suggests that HS simultaneously binds to two apolipoproteins of HDL, SAA and ApoA-I, and thereby induce SAA dissociation. The activity requires a minimum chain length of 12-14 sugar units, proposing an explanation to previous findings that short HS fragments preclude AA amyloidosis. The results address the initial events in the pathogenesis of AA amyloidosis.  相似文献   

13.
Calcium-induced changes in (Na+ + K+)-ATPase activity and structural changes of membrane bound proteins in rat heart sarcolemma were investigated. Increasing concentrations of Ca2+ (0.1-8.0 mmol.l-1) gradually inhibited the (Na+ + K+)-ATPase activity and decreased the alpha-helix content of sarcolemmal proteins. Mathematical and graphical analysis of observed data yielded a quantitative relationship between Ca2+-induced changes in (Na+ + K+)-ATPase activity and the secondary structure of membrane proteins in cardiac sarcolemma.  相似文献   

14.
Human serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Although several studies have been performed, a detailed understanding of the molecular mechanism for SAA fibrillation remains elusive. Glycosaminoglycans such as heparin are suggested to serve as scaffolds in amyloid fibril formation in some cases. In the present study, amyloidogenic properties of synthetic fragment peptides corresponding to the N-terminal (residues 1-27), central (residues 43-63), and C-terminal (residues 77-104) regions of SAA molecule induced by heparin were examined using fluorescence, circular dichroism (CD), and electron microscopy. Fluorescence and CD measurements demonstrated that SAA (1-27) peptide is evidently involved in heparin-induced amyloidogenesis. Correspondingly, relatively minor changes in fluorescence and a quite different pattern in the CD spectrum were observed in SAA (43-63) peptide. In contrast, SAA (77-104) peptide did not show any changes induced by heparin. Transmission electron microscopy indicated that SAA (1-27) peptide forms short and straight fibrils, whereas SAA (43-63) peptide forms much longer and seemingly elastic fibrils. These results suggest that the N-terminal region plays a crucial role as a rigid core and the central region facilitates the elongation of fibrils in heparin-induced amyloidogenesis of SAA molecule.  相似文献   

15.
The nucleotide sequences of two mink serum amyloid A (SAA) cDNA clones have been analyzed, one (SAA1) 776 base pairs long and the other (SAA2) 552 base pairs long. Significant differences were discovered when derived amino acid sequences were compared with data for apoSAA isolated from high density lipoprotein. Previous studies of mink protein SAA and amyloid protein A (AA) suggest that only one SAA isotype is amyloidogenic. The cDNA clone for SAA2 defines the "amyloid prone" isotype while SAA1 is found only in serum. Mink SAA1 has alanine in position 10, isoleucine in positions 24, 67, and 71, lysine in position 27, and proline in position 105. Residue 10 in mink SAA2 is valine while arginine and asparagine are at positions 24 and 27, respectively, all characteristics of protein AA isolated from mink amyloid fibrils. Mink SAA2 also has valine in position 67, phenylalanine in position 71, and amino acid 105 is serine. It remains unknown why these six amino acid substitutions render SAA2 more amyloidogenic than SAA1. Eighteen hours after lipopolysaccharide stimulation, mink SAA mRNA is abundant in liver with relatively minor accumulations in brain and lung. Genes encoding both SAA isotypes are expressed in all three organs while no SAA mRNA was detectable in amyloid prone organs, including spleen and intestine, indicating that deposition of AA from locally synthesized SAA is unlikely. A third mRNA species (2.2 kilobases) was identified and hybridizes with cDNA probes for mink SAA1 and SAA2. In addition to a major primary translation product (molecular mass 14,400 Da) an additional product with molecular mass 28,000 Da was immunoprecipitable.  相似文献   

16.
Light chain, or AL, amyloidosis is a pathological condition arising from systemic extracellular deposition of monoclonal immunoglobulin light chain variable domains in the form of insoluble amyloid fibrils, especially in the kidneys. Substantial evidence suggests that amyloid fibril formation from native proteins occurs via a conformational change leading to a partially folded intermediate conformation, whose subsequent association is a key step in fibrillation. In the present investigation, we have examined the properties of a recombinant amyloidogenic light chain variable domain, SMA, to determine whether partially folded intermediates can be detected and correlated with aggregation. The results from spectroscopic and hydrodynamic measurements, including far- and near-UV circular dichroism, FTIR, NMR, and intrinsic tryptophan fluorescence and small-angle X-ray scattering, reveal the build-up of two partially folded intermediate conformational states as the pH is decreased (low pH destabilized the protein and accelerated the kinetics of aggregation). A relatively nativelike intermediate, I(N), was observed between pH 4 and 6, with little loss of secondary structure, but with significant tertiary structure changes and enhanced ANS binding, indicating exposed hydrophobic surfaces. At pH below 3, we observed a relatively unfolded, but compact, intermediate, I(U), which was characterized by decreased tertiary and secondary structure. The I(U) intermediate readily forms amyloid fibrils, whereas I(N) preferentially leads to amorphous aggregates. Except at pH 2, where negligible amorphous aggregate is formed, the amorphous aggregates formed significantly more rapidly than the fibrils. This is the first indication that different partially folded intermediates may be responsible for different aggregation pathways (amorphous and fibrillar). The data support the hypothesis that amyloid fibril formation involves the ordered self-assembly of partially folded species that are critical soluble precursors of fibrils.  相似文献   

17.
AA amyloidosis is the result of overproduction and aberrant processing of acute-phase serum amyloid A1 (SAA1) by hepatocytes. Proteolytic cleavage of SAA1 is believed to play a central role in AA amyloid formation. The SAA1 protein undergoes a cleavage of 18 residues consisting of the signal peptide at the N-terminal region. To better understand the mechanism behind systemic amyloidosis in the SAA1 protein, we studied the misfolding propensity of the signal peptide region. We first examined the signal peptide amino acid SAA derived from different animal species. A library of 16 peptides was designed to evaluate the propensity of aggregation. The amyloidogenic potential of each SAA1 signal peptide homolog was assessed using in silico Tango program, thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and seeding with misfolded human SAA1 signal peptide. After 7 days of incubation, most of the SAA1 signal peptide fragments had the propensity to form fibrils at a concentration of 100 μM in 50 mM Tris buffer at 37 °C by TEM. All peptides were able to generate fibrils at a higher concentration, i.e 500 μM in 25 mM Tris buffer with 50% HFIP, by ThT. All SAA1 signal synthetic peptides designed from the different animal species had the propensity to misfold and form fibrils, particularly in species with low occurrence of systemic amyloidosis. The human SAA1 signal peptide region was capable to seed the SAA1 1–25 and 32–47 peptide regions. Characterizing fibrillar conformations are relevant for seeding intact and/or fragmented SAA, which may contribute, to the mechanism of protein misfolding. This research signifies the importance of the signal peptide region and its possible contribution to the misfolding of aggregation-prone proteins.  相似文献   

18.
The three active serum amyloid A (SAA) genes of mice, SAA 1, SAA 2, and SAA 3, are coordinately expressed in liver during acute and chronic inflammatory stimulation and experimental amyloidosis. The genes, primarily SAA 3, are also expressed extrahepatically. The apoprotein SAA 2 is the precursor of the amyloid A (AA) fibril protein that is deposited as insoluble fibrils extracellularly in spleen and other organs when amyloidosis occurs secondarily to inflammation. The exact cause of AA fibril formation is unknown. Amyloid enhancing factor is a high m.w. glycoprotein extracted from amyloidotic organs. Administration of amyloid enhancing factor alters experimental inflammation to bring about accelerated deposition of amyloid A fibrils first in spleen and later in other organs. In this study, hepatic and extrahepatic expression of the SAA genes were compared during accelerated amyloidosis relative to inflammation uncomplicated by amyloidosis. Differences in kinetics and pattern of SAA gene expression by resident peritoneal macrophages and liver were detected during four dissimilar inflammatory episodes. Macrophages expressed the SAA 3 gene solely, and to a greater extent in chronic than in acute inflammation. In accelerated amyloid induction, macrophage SAA 3 expression increased as SAA 1 and SAA 2 expression in liver decreased. However, alpha-1-acid glycoprotein expression remained elevated throughout the course of amyloid induction. The greatly increased expression of the SAA 3 gene by macrophages and decreased expression of the SAA 1 and SAA 2 genes in liver during amyloidosis, suggests that altered SAA gene expression may play a pathogenetic role in experimental amyloid deposition.  相似文献   

19.
To model the possible involvement of sulfated proteoglycans in amyloidogenesis, we examined the influence of sulfate ions, heparan, and Congo red on the conformation and morphology of peptides derived from the Alzheimer beta/A4 amyloid protein. The peptides included residues 11-28, 13-28, 15-28, and 11-25 of beta/A4. Negative-stain electron microscopy revealed a sulfate-specific tendency of the preformed peptide fibrillar assemblies of beta(11-28), beta(13-28), and beta(11-25), but not beta(15-28), to undergo extensive lateral aggregation and axial growth into "macrofibers" that were approximately 0.1-0.2 micron wide by approximately 20-30 microns long. Such effects were observed at low sulfate concentrations (e.g., 5-50 mM) and could not be reproduced under comparable conditions with Na2HPO4, Na2SeO4, or NaCl. Macrofibers in NaCl were only observed at 1,000 mM. At physiological ionic strength of NaCl, fibril aggregation was observed only with addition of sulfate ions at 5-50 mM. Selenate ions, by contrast with sulfate ions, induced only axial and not substantial lateral aggregation of fibrils. X-ray diffraction indicated that the original cross-beta peptide conformation remained unchanged; however, sulfate binding did produce an intense approximately 65 A meridional reflection not recorded with control peptides. This new reflection probably arises from the periodic deposition of the electron-dense sulfate along the (long) axis of the fibril. The sulfate binding could provide sites for the binding of additional fibrils that generate the observed lateral and axial aggregation. The binding of heparan to beta(11-28) also produced extensive aggregation, suggesting that in vivo sulfated compounds can promote macrofibers. The amyloid-specific, sulfonated dye Congo red, even in the presence of sulfate ions, produced limited aggregation and reduced axial growth of the fibrils. Therefore, electrostatic interactions are important in the binding of exogenous compounds to amyloid fibrils. Our findings suggest that the sulfate moieties of certain molecules, such as glycosaminoglycans, may affect the aggregation and deposition of amyloid fibrils that are observed as extensive deposits in senile plaques and cerebrovascular amyloid.  相似文献   

20.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号