首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The gibbon ape leukemia virus (GALV) contains enhancer activity within its long terminal repeat. In the GALV Seato strain this activity resides in a 48-base-pair (bp) repeated element. We demonstrate the existence of a cellular protein which binds in this region of the Seato strain. A sensitive method for enriching protein-DNA complexes from crude extracts coupled with exonuclease and DNase footprint analysis revealed the specific binding of this protein to a 21-bp region within each repeated element. A 22-bp oligonucleotide fragment defined solely by the 21-bp footprint binds a protein in vitro and displays enhancer activity in vivo, suggesting that this protein is a major determinant of GALV enhancer activity. The protein is present in three cell lines which are positive for enhancer activity and is not detected in Jurkat cells, which are negative for enhancer activity. Only GALV long-terminal-repeat variants which support high levels of enhancer activity in vivo compete with this protein for specific binding in vitro, suggesting a potential role for the protein in determining enhancer activity. This protein binding is not inhibited by competition with heterologous retroviral enhancers, demonstrating that it is not a ubiquitous retroviral enhancer binding protein.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Chromatin structure was examined at the 3′-boundary region of the human β-globin locus control region hypersensitive site-2 (LCR HS-2) using several footprinting agents. Erythroid K562 cells (possessing HS-2) were damaged by the footprinting agents: hedamycin, bleomycin and four nitrogen mustard analogues. Purified DNA and non-erythroid HeLa cells (lacking HS-2) were also damaged as controls for comparison with K562 cells. The comparison between intact cells and purified DNA showed several protected regions in K562 cells. A large erythroid-specific protected region of 135 bp was found at the boundary of HS-2. The length of this protected region (135 bp) was close to that of DNA contained in a nucleosome core (146 bp). Another two protected regions were found upstream of the protected region. A 16-bp erythroid-specific footprint co-localised with a GATA-1 motif—this indicated that the GATA-1 protein could be involved in positioning the nucleosome. Further upstream, a 100-bp footprint coincided with an AT-rich region. Thus our footprinting results suggest that the 3′-boundary of LCR HS-2 is flanked by a positioned nucleosome and that an erythroid-specific protein binds to the sequence adjacent to the nucleosome and acts to position the nucleosome at the boundary of the hypersensitive site.  相似文献   

15.
We have initiated a study to identify host proteins which interact with the regulatory region of the human polyomavirus JC (JCV), which is associated with the demyelinating disease, progressive multifocal leukoencephalopathy. We examined the interaction of nuclear proteins prepared from different cell lines with the JCV regulatory region by DNA binding gel retardation assays. Binding was detected with nuclear extracts prepared from human fetal glial cells, glioma cells, and HeLa cells. Little or no binding was detected with nuclear extracts prepared from human embryonic kidney cells. Competitive binding assays suggest that the nuclear factor(s) which interacted with the JCV regulatory region was different from those which interacted with the regulatory region of the closely related polyomavirus SV40. We found three areas in the JCV regulatory region protected from DNase I digestion: site A, located just upstream from the TATA sequence in the first 98-base pair (bp) repeat; site B, located upstream from the TATA sequence in the second 98-bp repeat; and site C, located just following the second 98-bp repeat. There were some differences in the ability of the nuclear factor(s) from the two brain cell lines and HeLa cells to completely protect the nucleotides within the footprint region. The results from the DNase I protective studies and competitive DNA binding studies with specific oligonucleotides, suggest that nuclear factor-1 or a nuclear factor-1-like factor is interacting with all three sites in the JCV regulatory region. In addition, the results suggest that the nuclear factor which interacts with the JCV regulatory region from human brain cell lines is different from the factor found in HeLa cells.  相似文献   

16.
17.
Analysis of the collagen alpha 1(I) promoter.   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号