首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature-sensitive Syrian hamster mutant cell line, ts-745, exhibiting novel mitotic events has been isolated. The cells show normal growth and mitosis at 33 degrees C, the permissive temperature. At the nonpermissive temperature of 39 degrees C, mitotic progression becomes aberrant. Metaphase cells and those cells still able to form a metaphase configuration continue through and complete normal cell division. However, cells exposed to 39 degrees C for longer than 15 min can not form a normal metaphase spindle. Instead, the chromosomes are distributed in a spherical shell, with microtubules (MT) radiating to the chromosomes from four closely associated centrioles near the center of the cell. The cells progress from the spherical monopolar state to other monopolar orientations conical in appearance with four centrioles in the apex region. Organized chromosome movement is present, from the spherical shell state to the asymmetrical orientations. Chromosomes remain in the metaphase configuration without chromatid separation. Prometaphase chromosome congression appears normal, as the chromosomes and MT form a stable monopolar spindle, but bipolar spindle formation is apparently blocked in a premetaphase state. When returned from 39 degrees to 33 degrees C, the defective phenotype is readily reversible. At 39 degrees C, the mitotic abnormality lasts 3-5 h, followed by reformation of a single nucleus and cell flattening in an interphase- like state. Subsequent cell cycle events appear to occur, as the cells duplicate chromosomes and initiate a second round of abnormal mitosis. Cell cycle traversion continues for at least 5 d in some cells despite abnormal mitosis resulting in cells accumulating several hundred chromosomes.  相似文献   

2.
Aurora-A, a member of the Aurora/Ipl1-related kinase family, is overexpressed in various types of cancer and considered to play critical roles in tumorigenesis. To better understand the pathological effect of Aurora-A activation, it is first necessary to elucidate the physiological functions of Aurora-A. Here, we have investigated the roles of Aurora-A in mitotic progression with the small interfering RNA, antibody microinjection, and time lapse microscopy using human cells. We demonstrated that suppression of Aurora-A by small interfering RNA caused multiple events to fail in mitosis, such as incorrect separation of centriole pairs, misalignment of chromosomes on the metaphase plate, and incomplete cytokinesis. Antibody microinjection of Aurora-A into late G2 cells induced dose-dependent failure in separation of centriole pairs at prophase, indicating that Aurora-A is essential for proper separation of centriole pairs. When we injected anti-Aurora-A antibodies into prometaphase cells that had separated their centriole pairs, chromosomes were severely misaligned on the metaphase plate, indicating that Aurora-A is required for proper movement of chromosomes on the metaphase plate. Furthermore, inhibition of Aurora-A at metaphase by microinjected antibodies prevented cells from completing cytokinesis, suggesting that Aurora-A also has important functions in late mitosis. These results strongly suggest that Aurora-A is essential for many crucial events during mitosis and that the phosphorylation of a series of substrates by Aurora-A at different stages of mitosis may promote diverse critical events in mitosis to maintain chromosome integrity in human cells.  相似文献   

3.
The small GTPase Ran has multiple roles during the cell division cycle, including nuclear transport, mitotic spindle assembly, and nuclear envelope formation. However, regulation of Ran during cell division is poorly understood. Ran-GTP is generated by the guanine nucleotide exchange factor RCC1, the localization of which to chromosomes is necessary for the fidelity of mitosis in human cells. Using photobleaching techniques, we show that the chromosomal interaction of human RCC1 fused to green fluorescent protein (GFP) changes during progression through mitosis by being highly dynamic during metaphase and more stable toward the end of mitosis. The interaction of RCC1 with chromosomes involves the interface of RCC1 with Ran and requires an N-terminal region containing a nuclear localization signal. We show that this region contains sites phosphorylated by mitotic protein kinases. One site, serine 11, is targeted by CDK1/cyclin B and is phosphorylated in mitotic human cells. Phosphorylation of the N-terminal region of RCC1 inhibits its binding to importin alpha/beta and maintains the mobility of RCC1 during metaphase. This mechanism may be important for the localized generation of Ran-GTP on chromatin after nuclear envelope breakdown and may play a role in the coordination of progression through mitosis.  相似文献   

4.
G1 tetraploidy checkpoint and the suppression of tumorigenesis   总被引:9,自引:0,他引:9  
Checkpoints suppress improper cell cycle progression to ensure that cells maintain the integrity of their genome. During mitosis, a metaphase checkpoint requires the integration of all chromosomes into a metaphase array in the mitotic spindle prior to mitotic exit. Still, mitotic errors occur in mammalian cells with a relatively high frequency. Metaphase represents the last point of control in mitosis. Once the cell commits to anaphase there are no checkpoints to sense segregation defects. In this context, we will explore our recent finding that non-transformed mammalian cells have a checkpoint that acts subsequent to mitotic errors to block the proliferation of cells that have entered G1 with tetraploid status. This arrest is dependent upon both p53 and pRb, and may represent an important function of both p53 and pRb as tumor suppressors. Further, we discuss the possibility that this mechanism may similarly impose G1 arrest in cells that become aneuploid through errors in mitosis.  相似文献   

5.
Following irradiation p53-function-deficient tumour cells undergo mitotic catastrophe and form endopolyploid cells. A small proportion of these segregates nuclei, and give rise to viable descendants. Here we studied this process in five tumour cell lines. After mitotic failure, tumour cells enter the endocycle and form mono-nucleated or multi-nucleated giant cells (MOGC and MNGC). MNGC arise from arrested anaphases, MOGC, from arrested metaphases. In both cases the individual genomes establish a radial pattern by links to a single microtubule organizing centre. Segregation of genomes is also ordered. MNGC present features of mitosis being resumed from late anaphase. In MOGC the sub-nuclei retain arrangement of stacked metaphase plates and are separated by folds of the nuclear envelope. Mitosis then resumes in sub-nuclei directly from metaphase. The data presented indicate that endopolyploid tumour cells preserve the integrity of individual genomes and can potentially re-initiate mitosis from the point at which it was interrupted.  相似文献   

6.
The sequence of mitosis in sea urchin eggs was investigated in the presence and absence of D2O. Direct observations of living cells under a polarizing microscope and observations with fixation-staining procedures were used. The duration of mitosis was extended by the presence of D2O. The slight extension of anaphase was due to elongation of the spindle in D2O, but the period from prophase to metaphase was clearly prolonged in the deuterated condition. These results indicate that D2O does not suppress anaphase chromosome movement, but does affect prometaphase and delays the alignment of chromosomes on the equatorial plane of the mitotic spindle at metaphase. The stability of the isolated mitotic apparatus against Ca ions and low temperature also was investigated. There was no difference in the deterioration of isolated spindle birefringence under normal and deuterated conditions. The implications of these results are discussed in relation to the enhancement effect of D2O on the volume and birefringence of the living mitotic spindle.  相似文献   

7.
Human cervix carcinoma cells of the line NHIK 3025 were exposed to light after 18 h incubation with Photofrin II. After this photodynamic treatment cells in the interphase were retarded with respect to entry into mitosis for a period which increased with increasing light dose. Following the prolonged interphase, an increase in the mitotic index was observed, giving rise to a 3-fold higher level of mitotic cells compared to the control level. Staining of methanol-fixed cells with the DNA-specific dye mithramycin indicated that the increase in mitotic index was due to a prolongation of the metaphase. For all the light doses studied most of the metaphase cells could be characterized as three-group metaphases or c-metaphase-like structures for the first 8 h after treatment. An approximately 10-fold increase above the control level in the number of tripolar mitoses was also observed. A 2h incubation in a Photofrin II-free medium after the 18 h incubation with Photofrin II and before light exposure reduced the fluorescence of the cells by 30 per cent. However, this wash-out period had no effect on the increase in mitotic index after light exposure. A light dose corresponding to 80 per cent survival (as assayed on asynchronous cells) was given to cells in mitosis after Photofrin II incubation. This treatment delayed more than 90 per cent of the metaphase cells from entering the anaphase for at least 1 h. Cells photodynamically treated in the anaphase and telophase entered the interphase at a similar rate as control cells. These observations indicate a temporary block in the initiation of the anaphase and a prolongation of the metaphase. A microscopic study of cells immunologically stained for beta-tubulin 1 h after photodynamic treatment indicated that the organization of the spindle apparatus was disturbed by the photodynamic treatment. Such perturbations are suggested to be the cause of the observed accumulation of cells in mitosis.  相似文献   

8.
Summary Themet1 mutation inChlamydomonas reinhardtii causes metaphase arrest. Arrested cells have disassembled cortical microtubules, a fully assembled spindle, condensed and aligned metaphase chromosomes and abundant mitotic phosphoproteins recognised by MPM-2 antibody in the nuclear region. Protein purified by affinity for the mitotic protein p13suc1 contains p34cdc2-like H1 histone kinase activity at times when control cells have inactivated this enzyme. The active enzyme, when microinjected intoTradescantia stamen hair cells, accelerated progress through prophase to normal completion of mitosis, indicating that the mutation did not disable the mitotic Cdc2 protein kinase enzyme complex. The mutation prevented the normal lowering of this kinase activity that accompanies anaphase. A defect at time of mitosis rather than earlier in the cycle was indicated by temperature shifting of synchronous cells, which identified the earliest faulty progress as occurring near the beginning of mitosis and the time at which the essential function is completed near the end of mitosis. Themet1 gene mapped approximately 33 cM fromery-2 and extended the known limits of the linkage group XIV.  相似文献   

9.
Fusion of a cell in mitosis with a cell in interphase results in the condensation of chromatin in the interphase nucleus into chromosomes. Premature chromosome condensation is caused by certain proteins, called mitotic factors, that are present in the mitotic cell and are localized on chromosomes. Extracts from mitotic cells were used to immunize mice to produce monoclonal antibodies specific for cells in mitosis. Among the antibodies obtained, the MPM-4 antibody defines a 125-kD polypeptide antigen located on mitotic chromosomes by indirect immunofluorescence. Although the polypeptide antigen is present in approximately equal concentrations in extracts of interphase cells and mitotic cells, as revealed by immunoblots, it cannot be detected cytologically in the former. Cell fractionation experiments showed that the 125-kD antigen is found in the cytoplasm of interphase cells and metaphase cells, but is concentrated in fractions containing metaphase chromosomes, although not detectable in interphase nuclei. Even though the antigen is apparently primate-specific, it binds to mitotic chromosomes and prematurely condensed chromosomes in human-rodent cell hybrids without regard to the species of origin of the mitotic inducer. The presence of the antigen in the cytoplasm of interphase cells and the chromosomes of mitotic cells suggests a relationship between the presence of the antigen on chromosomes and the process of chromosome condensation and decondensation.  相似文献   

10.
Reorganization of the actin cytoskeleton during mitosis is crucial for regulating cell division. A functional role for γ-actin in mitotic arrest induced by the microtubule-targeted agent, paclitaxel, has recently been demonstrated. We hypothesized that γ-actin plays a role in mitosis. Herein, we investigated the effect of γ-actin in mitosis and demonstrated that γ-actin is important in the distribution of β-actin and formation of actin-rich retraction fibers during mitosis. The reduced ability of paclitaxel to induce mitotic arrest as a result of γ-actin depletion was replicated with a range of mitotic inhibitors, suggesting that γ-actin loss reduces the ability of broad classes of anti-mitotic agents to induce mitotic arrest. In addition, partial depletion of γ-actin enhanced centrosome amplification in cancer cells and caused a significant delay in prometaphase/metaphase. This prolonged prometaphase/metaphase arrest was due to mitotic defects such as uncongressed and missegregated chromosomes, and correlated with an increased presence of mitotic spindle abnormalities in the γ-actin depleted cells. Collectively, these results demonstrate a previously unknown role for γ-actin in regulating centrosome function, chromosome alignment and maintenance of mitotic spindle integrity.  相似文献   

11.
The nuclear lamins are directed from the cytoplasm to chromosomes as part of the maturation pathway of the interphase nucleoskeleton. In mitosis, the three polypeptides lamin A, B and C were found in the cytoplasm from prophase until anaphase and shifted to chromosomal surfaces at telophase (Ely, D'Arcy and Jost, 1978; Gerace, Blum and Blobel, 1978). We show here that early events in nucleoskeleton formation could be regulated by extracellular pH. When exponentially growing tissue culture cells and cells arrested in mitosis were exposed to different extracellular pH values, three patterns of distribution of lamins were observed in mitotic cells: exclusively cytoplasmic distribution of mitotic lamins at low pH (6.8 to 7.3); a premature association of a lamin subfraction with metaphase chromosomes at intermediate pH 7.5; a more prominent relocation of lamins onto chromosomes in metaphase and in disorganized metaphase at pH 8.0. Reassembly of lamins occurred at telomeric ends of mitotic chromosomes followed by a lateral fusion to form a nuclear cage. Using immunogold localization, we show that pH-induced, premature, partial deposition of lamins onto condensed chromosomes may occur prior to the formation of the bilamellar nuclear envelope. These results suggest that the pH-induced redistribution of lamins acts to trigger early events of mitosis to interphase transition.  相似文献   

12.
The effect of cytomegalovirus on the cell cycle was studied autoradiographically in an asynchronous culture of human diploid fibroblasts. The analysis of labeled mitosis showed that some cells infected in the S phase ceased to progress through the cell cycle at one of its phases (S, G2, or M); at the same time, at least part of infected cells remained capable of entering mitosis. Beginning from day 2 after infection by cytomegalovirus, the accumulation of pathological mitotic cells blocked at metaphase was observed in the culture. Approximately 50% of these cells contained 3H-thymidine label above chromosomes. This fact suggested the possibility of pathological mitosis in cells that were infected both at the S and other phases of the cell cycle. The detailed morphological analysis of chromosomes at different stages of infection demonstrated that the degree of their morphological changes increases from slight (stronger condensation) to severe pathology (fragmentation). In the aggregate, the results of the study suggested that abnormal chromosome morphology resulted from irreversible cell division arrest under the effect of cytomegalovirus.  相似文献   

13.
It has been shown that in seed progeny of Quercus robur L., Pinus sylvestris L. and Betula pendula Roth. some cytogenetical characteristics vary under conditions of contamination. Such changes may be common or specific type. Thus, the frequency of pathological mitosis increases under such conditions in all the investigated species of trees. Inhibition of mitosis was found in the progeny of the pine, and variability in the number of nucleoli was detected in the pine and oak. However, in some cases the level of pathological mitosis in the oak progeny did not differ from the control, but the mitotic activity was higher due to the presence of much more cells being at the prophase stage. In the birch progeny under conditions of contamination the mitotic index increased, with a simultaneous shifts in the peaks of mitotic activity. The possibility of using these cytological characteristics for the aims of cytogenetical monitoring is considered.  相似文献   

14.
Polokinases are a subfamily of the mitotic serine/threonine kinases involved in coordination of a run of mitosis of eukaryotic cells. The main polo-like-kinase 1p (PLK1) is a passenger protein transiently localized to centrosomes, kinetochores and central spindle during mitosis and is required for bi-orientation of the normal metaphase spindle. Its activity is regulated at the level of protein stability and by action of upstream kinases, so that it peaks in metaphase and drops as cells exit mitosis. Regulation of location and activity of Plk1p is bi-phasic: the COOH terminal polo box domain binds to an array of mitotic phosphoproteins and followed by an allosteric conformation is activated to phosphorylate many its substrates. These mode of action involves polokinases into critical transitions of the cell cycle phases, and in control at some checkpoints of this cycle.  相似文献   

15.
Experiments have been performed on a temperature-sensitive hamster cell line, ts-546. After the cells are switched to the non-permissive temperature, interphase cells continue through the cell cycle until the cells enter metaphase. Normal mitotic events then fail to occur. Metaphase chromosomes in the cells condense and coalesce into chromatin aggregates. Nuclear membrane re-forms around the aggregates resulting in the formation of mono-, bi- or multi-nucleate interphase-like cells. The conversion of mitotic cells to interphase-like states is completed within a few hours. The initial characterization of the mutant cell line was based on the observation that rounded-up cells accumulate in culture at the non-permissive temperature. The mitotic roundingup process may be utilized as a useful marker for selective isolation of mutant cell lines defective in mitosis.  相似文献   

16.
Shatrova A  Aksenov ND  Zenin VV 《Tsitologiia》2002,44(11):1068-1078
Studying the effect of topoisomerase II (topo II) inhibitors on cell passage through mitosis seems to be important for understanding the role of this enzyme during chromosome condensation and segregation. A flow cytometric assay (Zenin et al., 2001) allowed to determine the mitotic index, and to discriminate between not only cells in G2 and M phases (including metaphase and anaphase cells), but also cells in pseudo-G1 with 4c DNA content. It is shown that topo II catalytic inhibitor ICRF-193 blocks G2-M transition in a lymphoblastoid cell line GM-130. Addition of caffeine to cells abrogated a block of their entering mitosis but not the inhibitor action. Cells entered mitosis, which was proven by the presence of chromosomes in the examined specimen, and, bypassing anaphase, appeared in pseudo-G1 with 4c DNA content. We have found that in the presence of ICRF-193 cells, GM-130 and Hep-2 lines, previously blocked by nocodazole when in mitosis and then washed, pass through metaphase, enter anaphase and leave it to pass to pseudo-G1 with the 4c DNA content. Thus, by inhibiting topo II activity ICRF-193 causes abnormal mitotic transition.  相似文献   

17.
Mammalian cells change volume during mitosis   总被引:1,自引:0,他引:1  
Using single cell-imaging methods we have found that the volume of adherent cells grown in culture decreases as the cells rounds when it enters mitosis. A minimal volume is reached at metaphase. Rapid volume recovery initiates before abscission as cells make the transition from metaphase to cytokinesis. These volume changes are simultaneous with the rapid surface area decrease and recovery observed in mitotic cells [1].  相似文献   

18.
In investigating the regulation of nucleophosmin/B23 mRNA expression at the entry of mitosis, the results of Northern gel blot analysis showed that the nucleophosmin/B23 mRNA levels significantly increased in prometaphase (nocodazole-arrested) or metaphase (colchicine-arrested) cells collected by mitotic shake-off. A higher level of nucleophosmin/B23 mRNA was detected in all the collected mitotic cells arrested by treatment with nocodazole for 10-18h as compared to that in G2 cells. An attempt was then made to determine whether the regulation of nucleophosmin/B23 mRNA plays a role in the control of entry into mitosis. Down-regulation of nucleophosmin/B23 mRNA by transfection of its antisense construct resulted in the delay of cells entering mitosis. The demonstration of the characteristic changes in the mRNA level of nucleophosmin/B23 during the entry of cells into mitosis implicates the importance of nucleophosmin/B23 in the control of the mitotic fate of nucleoli and cell growth.  相似文献   

19.
The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.  相似文献   

20.
S Sigrist  H Jacobs  R Stratmann    C F Lehner 《The EMBO journal》1995,14(19):4827-4838
While entry into mitosis is triggered by activation of cdc2 kinase, exit from mitosis requires inactivation of this kinase. Inactivation results from proteolytic degradation of the regulatory cyclin subunits during mitosis. At least three different cyclin types, cyclins A, B and B3, associate with cdc2 kinase in higher eukaryotes and are sequentially degraded in mitosis. We show here that mutations in the Drosophila gene fizzy (fzy) block the mitotic degradation of these cyclins. Moreover, expression of mutant cyclins (delta cyclins) lacking the destruction box motif required for mitotic degradation affects mitotic progression at distinct stages. Deltacyclin A results in a delay in metaphase, deltacyclin B in an early anaphase arrest and deltacyclin B3 in a late anaphase arrest, suggesting that mitotic progression beyond metaphase is ordered by the sequential degradation of these different cyclins. Coexpression of deltacyclins A, B and B3 allows a delayed separation of sister chromosomes, but interferes wit chromosome segregation to the poles. Mutations in fzy block both sister chromosome separation and segregation, indicating that fzy plays a crucial role in the metaphase/anaphase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号