首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three flavonol glycosides were identified in the leaves ofTrillium undulatum. The main glycoside was kaempferol 3-O-α-rhamnosyl-(1→2)-O-[α-rhamnosyl-(1→6)]-β-glucoside; the glycosidic sugars and their linkage pattern were quite different from those of the leaf flavonoids ofT. tschonoskii, T. apetalon, T. Kamtschaticum, T. erectum andT. grandiflorum. Two minor compounds were kaempferol/quercetin 3-O-rutinoside. Part 2 in the series “Studies of the flavonoids of genusTrillium”. For Part 1, see Yoshitamaet al., (1992) Bot. Mag. Tokyo105: 555.  相似文献   

2.
Seven flavonol glycosides were isolated from the leaves ofT. apetalon. They were identified chromatographically and spectrally to be: quercetin/kaempferol 3-O-α-arabinopyranosyl-(1→6)-β-galactopyranoside (TQ and TK), quercetin/kaempferol 3-O-[2‴-O-acetyl-α-arabinopyranosyl]-(1→6)-β-galactopyranoside (TAQ and TAK), quercetin 3-O-β-glucoside (ISQ), isorhamnetin 3-O-α-arabinopyranosyl-(1→6)-β-galactopyranoside (TI) and isorhamnetin 3-O-[2‴-O-acetyl-α-arabinopyranosyl]-(1→6)-β-galactopyranoside (TAI). TQ, TAQ, TI and TAI were major constituents. This is the first report on two new isorhamnetin-type glycosides, TI and TAI. The seven flavonol glycosides identical to those ofT. apetalon were isolated and identified in the leaves ofT. kamtschaticum; TQ and TAQ were also major components, but TI and TAI were only minor components. TI and TAI were not detected in the leaves ofT. tschonoskii. These leaf-flavonoid patterns were discussed from a chemosystematic point of view. Part 3 in the series “Studies of the flavonoids of the genusTrillium”. For Part 2 see Yoshitamaet al., (1997) J. Plant Res.110: 379–381.  相似文献   

3.
Leaves of the monotypic angiosperm familyLactoridaceae exhibit flavonoid constituents consisting of six 3-0-diglycosides of the flavonols kaempferol and isorhamnetin. The presence of flavonols is concordant with the placement ofLactoridaceae among the archaic or primitive flowering plants. Flavonoid chemistry is less informative on the relationships of the family within the primitive dicots. The presence of isorhamnetin suggests closer affinities with families in theLaurales, particularly theGomortegaceae andMonimiaceae. Phenetic and cladistic analyses of morphological features place theLactoridaceae near several families in theMagnoliales.  相似文献   

4.
延龄草是土家族四大名药之一,具有活血祛瘀、镇静安神、治疗跌打损伤等功效,现代药理研究表明其在改善阿尔茨海默症等中枢神经退化性疾病方面具有一定疗效。由于早年的大量采挖及现代保育工作尚未完善,延龄草资源稀缺,已被列为国家三级珍稀濒危保护植物。本文归纳了延龄草皂苷类成分及其结构分类、药理活性以及资源保育方面的研究进展,剖析了目前延龄草资源发展中亟待解决的问题,旨在为延龄草资源的可持续利用和产业发展提供基础和依据。  相似文献   

5.
Yokosuka A  Mimaki Y 《Phytochemistry》2008,69(15):2724-2730
Six steroidal glycosides, along with 14 known compounds, were isolated from the underground parts of Trillium erectum L. (Liliaceae). The structures of 1-6 were determined on the basis of extensive spectroscopic analysis, including two-dimensional (2D) NMR data, and a few chemical transformations. The isolated compounds were evaluated for their cytotoxic activity against HL-60 human promyelocytic leukemia cells.  相似文献   

6.
Li Q  Xiao M  Guo L  Wang L  Tang L  Xu Y  Yan F  Chen F 《Biochemical genetics》2005,43(7-8):445-458
The genetic diversity and genetic structure of Trillium tschonoskii (Maxim) were investigated using amplified fragment length polymorphism markers. Eight primer combinations were carried out on 105 different individuals sampled from seven populations. Of the 619 discernible DNA fragments generated, 169 (27.3%) were polymorphic. The percentage of polymorphic bands within populations ranged from 4.52 to 10.50. Genetic diversity (HE) within populations ranged from 0.0130 to 0.0379, averaging 0.0536 at the species level. Genetic differentiation among populations was detected based on Nei's genetic diversity analysis (53.03%) and analysis of molecular variance (AMOVA) (52.43%). AMOVA indicated significant genetic differentiation among populations (52.43% of the variance) and within populations (47.57% of the variance) (p < 0.0002). Gene flow was low (0.4429) among populations. Species breeding system and limited gene flow among populations are plausible reasons for the high genetic differentiation observed for this species. We propose an appropriate strategy for conserving the genetic resources of T. tschonoskii in China.  相似文献   

7.
The anti-inflammatory effect of 4′,5-dihydroxy-6,7-methylenedioxyflavonol 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-xylopyranoside, a constituent of the leaves of Boldoa purpurascens Cav. (Nyctaginaceae), was evaluated for its anti-inflammatory activity in the dextran 1% induced rat paw oedema model (acute inflammation) and the cotton pellet induced granuloma rat model (chronic inflammation). Flavonoid glycoside at doses of 2.5, 5 and 10 mg/kg, indomethacin at a dose of 7 mg/kg and the vehicle were administered orally. The compound showed significant anti-inflammatory activity in the acute phase in a dose dependent manner, most notably at the highest test dose 10 mg/kg. Also in the cotton pellet induced granuloma model, the compound showed a dose-dependent anti-inflammatory activity, with the highest effect at 10 mg/kg. In both assays, the test compound was more active than indomethacin tested at 7 mg/kg.  相似文献   

8.
Four flavonoid geographical races based on twenty flavonol 3-O-glycosides were found to exist in Chenopodium fremontii with those populations from the northern part of the range (northern Colorado, Wyoming. and western Nebraska) producing 7-methyl ethers and 3-O-galactosides and glucosides. Plants from Arizona. southern Colorado and New Mexico lack 7-methyl ethers and contain 3-O-rhamnogalactosides and rhamnoglucosides (rutinosides). California populations are chemically similar to those from Arizona, southern Colorado and New Mexico but contain arabinosides while lacking rutinosides. No morphological features could be correlated with the chemical races. Chenopodium fremontii can be distinguished chemically from other closely related diploid species of the western U.S., all of which exhibit simpler flavonoid patterns. It is suggested that the simpler chemical patterns for the latter species (which include C. atrovirens, C. desiccatum, C. hians. C. incanum, C. leptophyllum, and C. pratericola) are a derived condition relative to C. fremontii.  相似文献   

9.
The major flavonoids in Riccia crystallina are naringenin and its 7-O-glucoside, apigenin 7-O-glucoside and apigenin 7-O-glucuronide and derivatives. Ricciocarpus natans is a rich source of luteolin 7,3′-di-O-glucuronide and also contains the 7-O-glucuronides of apigenin and luteolin and the 3′-O-glucuronide of luteolin. A parallel between the production of biosynthetically simple flavonoids and reduced morphology is evident among these liverworts.  相似文献   

10.
Flavonoid analysis of the leaves inBrassica nigra, B. oleracea, B. campestris and their natural amphidiploids, led to the identification of 19 flavonol glycosides, including some acylated ones. These compounds were based on kaempferol, quercetin and isorhamnetin, except forB. oleracea, where no isorhamnetin glycosides were detected. Additive inheritance could normally be shown in the hybrids. Some considerations on the phylogenetic relationships within the group are expressed.  相似文献   

11.
Four new flavonol gycosides: kaempferide 3-O-beta-xylosyl (1-->2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4'-di-O-beta-galactoside, kaempferol 3,7,4'-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1-->6)] [beta-glucosyl (1-->2)]-beta-glucoside-7-O-alpha-rhamnoside, were characterized from a methanolic leaf extract of Warburgia ugandensis. The known flavonols: kaempferol, kaempferol 3-rhamnoside, kaempferol 3-rutinoside, myricetin, quercetin 3-rhamnoside, kaempferol 3-arabinoside, quercetin 3-glucoside, quercetin, kaempferol 3-rhamnoside-4'-galactoside, myricetin 3-galactoside and kaempferol 3-glucoside were also isolated. Structures were established by spectroscopic and chemical methods and by comparison with authentic samples.  相似文献   

12.
该研究采用硅胶、Sephadex LH-20柱色谱和HPLC进行分离纯化,并结合1D-NMR波谱数据和文献比对,研究了黄花倒水莲花中黄酮类成分及抗氧化活性。结果表明:(1)从黄花倒水莲花95%乙醇提取物的乙酸乙酯部位中分离鉴定出6个黄酮苷类化合物,即紫云英苷(1)、槲皮素-3-O-β-D-葡萄糖苷(2)、槲皮素-3-O-β-吡喃木糖苷(3)、槲皮素-3-O-α-L-吡喃阿拉伯糖苷(4)、异鼠李素-3-O-β-葡萄糖苷(5)、芦丁(6),其中化合物1-6均为首次从该植物中分离得到。(2)分别采用DPPH·自由基清除法及FRAP法对花的不同极性部位和所获得化合物进行总抗氧化能力评价,结果显示化合物1-6均表现出较好的抗氧化作用,其中化合物4的总抗氧化能力达到(4.533±0.13)mmol·g-1(Vc为5.951±0.25 mmol·g-1)。该研究结果不仅丰富了黄花倒水莲花的物质基础,而且为其今后的综合开发利用提供了科学依据。  相似文献   

13.
Rose K  Fetzner S 《Plasmid》2006,55(3):249-254
By pulsed-field gel electrophoresis, a linear DNA element of about 100 kb was identified in Actinoplanes missouriensis(T) DSM 43046, which grows on the flavonoids hesperidin, rutin and quercetin, and which contains a CO forming quercetinase. Among six Actinoplanes species and strains tested, including A. globisporus(T) DSM 43857, A. philippinensis(T) DSM 43019, A. brasiliensis(T) DSM 43805, A. auranticolor(T) DSM 43031, and A. utahensis(T) DSM 43147, only the A. missouriensis strain exhibited such a genetic element. The linear plasmid, named pAM1, has proteins covalently attached to its 5'-ends like other linear replicons of actinomycetes. Attempts to cure pAM1 failed, however a mutant with reduced plasmid content was obtained, which showed reduced ability to degrade the flavonoid rutinosides rutin and hesperidin. Plasmid pAM1 is the first extrachromosomal genetic element identified in an Actinoplanes species and may be useful to develop genetic tools for biotechnologically important Actinoplanes strains.  相似文献   

14.
Genetic variation over 40 protein loci and 46 populations representing three taxa of crested newts revealed moderate genetic distances between Triturus carnifex carnifex, T. c. macedonicus and T. cristatus. Two populations from the Geneva Basin (presumed to be introduced) were genetically similar to T. c. carnifex and dissimilar to T. c. macedonicus and T. cristatus, showing that they belong to T. c. carnifex and not to native T. cristatus. A significant pattern of spatial genetic variation was found within T. c. carnifex along a north to south axis, from Croatia to Calabria. The Genevan populations showed highest genetic similarity with T. carnifex from Tuscany, suggesting that the propagule originated from that area. Effects of a population genetic bottleneck associated with the introduction could not be documented. The observed high allelic variation in Genevan T. c. carnifex could not be directly explained by introgression from T. cristatus. Comparisons across the range, including zones of hybridization within the T. cristatus superspecies, indicated that some alleles typical for the Genevan population may represent the so-called `hybrizymes'.  相似文献   

15.
The effect of solar radiation on flavonoid biosynthesis was studied in bilberry (Vaccinium myrtillus L.) leaves. Expression of flavonoid pathway genes of bilberry was studied in the upper leaves of bilberry, exposed to direct sunlight, in the shaded leaves growing lower in the same plants and in fruits. Bilberry-specific digoxigenin–dUTP-labeled cDNA fragments of five genes from the general phenylpropanoid pathway coding phenylalanine ammonia-lyase and from the flavonoid pathway coding chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase were used as probes in gene expression analysis. Anthocyanins, catechins, proanthocyanidins, flavonols and hydroxycinnamic acids from the leaves and fruits were identified and quantified using high-performance liquid chromatography combined with a diode array detector. An increase in the expression of the studied flavonoid pathway genes was observed in leaves growing under direct sun exposure. Also, the concentrations of anthocyanins, catechins, flavonols and hydroxycinnamic acids were higher in the leaves exposed to direct sunlight. However, the concentration of polymeric procyanidins was lower in sun-exposed leaves, whereas that of prodelphinidins was slightly increased. The results give further support for the protective role of flavonoids and hydroxy cinnamic acids against high solar radiation in plants. Also, the roles of different flavonoid compounds as a defense against stress caused by sun exposure is discussed.Abbreviations ANS Anthocyanidin synthase - CHS Chalcone synthase - DFR Dihydroflavonol 4-reductase - F3H Flavanone 3-hydroxylase - GPD Glyceraldehyde-3-phosphate dehydrogenase - PAL Phenylalanine ammonia-lyase  相似文献   

16.
In plant-insect herbivore field studies, effects of cages, plant age, and mechanical clipping on host plant chemistry are often postulated but not well documented. We examined the effects of cages (for the purpose of restraining insects on experimental plots), plant age over the course of the experiment and mechanical clipping on plantain (Plantago lanceolata) chemistry. Leaf age affected the concentrations of nitrogen and iridoid glycosides (IGs; specifically aucubin and catalpol), with higher levels in newer leaves. Caged plants had higher levels of IGs and lower concentrations of nitrogen than uncaged plants. The IG concentrations were greater in new leaves of caged plants than uncaged plants, whereas the concentrations in mature leaves were unaffected by caging. Plants that were 5 weeks older had higher levels of IGs and lower nitrogen than plants harvested 5 weeks earlier. Comparison of three studies suggested that over the summer IG concentrations increase during dry years but decrease during wet years. Plants with above-ground parts clipped and then allowed to regrow for five weeks had similar concentrations of IGs and nitrogen compared to control plants; but the regrowth plants had a lower catalpol to total IG ratio. We conclude that cages and time can have significant positive effects on iridoid glycoside concentrations and significant negative effects on leaf nitrogen concentration. But our results also indicate that the direction and magnitude of the effects of cages, time and mechanical damage are not easily predicted. Therefore, it is advisable to determine and/or control for such effects in field experiments on plant-insect interactions.  相似文献   

17.
Three acylated flavonol glycosides have been identified from leaves of Planchonia grandis Ridley. They possess kaempferol as aglycone and two triglycosidic chains substituting hydroxyl groups at the 3- and 7-positions. The first glycosidic unit of each chain is esterified by a cis or trans p-coumaric acid. Structural elucidation was achieved by means of UV, NMR and mass spectrometry.  相似文献   

18.
An investigation of methanolic extract of Warburgia stuhlmannii leaves has led to the isolation of two new drimane-type sesquiterpene glycosides characterized as mukaadial 6-O-beta-D-glucopyranoside, mukaadial 6-O-alpha-L-rhamnopyranoside together with two other novel flavonol glycosides identified as 3',5'-O-dimethylmyricetin 3-O-beta-D-2",3"-diacetylglucopyranoside and 3'-O-methylquercetin 3-O-beta-D-2",3",4"-triacetylglucopyranoside. The known compounds; mukaadial, deacetylugandensolide, quercetin, kaempferol, kaempferol 3-O-alpha-L-rhamnopyranoside, quercetin 3-O-beta-D-glucopyranoside, kaempferol 7-O-beta-D-glucopyranoside, myricetin 3-O-alpha-L-rhamnopyranoside, quercetin 3-O-alpha-L-rhamnopyranoside, quercetin 3-O-sophoroside and isorhamnetin 3-O-beta-D-glucopyranoside were also isolated from the same extract.  相似文献   

19.
Six flavonol glycosides characterised as myricetin 3-O-alpha-rhamnosyl-(1'-->2')-alpha-rhamnoside-3'-O-alpha-rhamnoside, 5'-O-methylmyricetin 3-O-[alpha-rhamnosyl (1'-->2')][alpha-rhamnosyl (1'-->4')]-beta -glucoside-3'-O-beta-glucoside, 5'-O-methylmyricetin 3-O-alpha-rhamnosyl (1'-->2')-alpha-rhamnoside 3'-O-beta-galactoside, kaemferol 3-O-rutinoside-7-O-rutinoside, myricetin 3-O-rutinoside-3'-O-alpha-rhamnoside, myricetin 3-O-beta-glucosyl (1'-->2')-beta-glucoside-4'-O-beta-glucoside together with two iridoid glycosides identified as 6,8-diacetylharpagide and 6,8-diacetylharpagide-1-O-beta-(3',4'-di-O-acetylglucoside) have been isolated from extract of Ajuga remota aerial parts. Also isolated from the same extract were known compounds; kaempferol 3-O-alpha-rhamnoside, quercetin 3-O-beta-glucoside, quercetin 3-O-rutinoside, 8-acetylharpagide, ajugarin I and ajugarin II.  相似文献   

20.
To examine genetic variation in defensive chemistry within and between natural populations of Plantago lanceolata, we performed a greenhouse experiment using clonal replicates of 15 genotypes from each of two populations, from a mowed lawn and an abandoned hayfield. Replicates of each genotype were harvested for determinations of aboveground biomass and leaf chemical content either at the beginning of the experiment (initial controls), after exposure to herbivory by larvae of Junonia coenia, a specialist on P. lanceolata (herbivory treatment), or at the end of the experiment without exposure to herbivory (final controls). Allocation to the iridoid glycosides aucubin and catalpol and the phenylpropanoid glycoside verbascoside displayed significant genetic variation within and between populations, and differed with leaf age. Significant genotypextreatment interactions indicated genetic variation in response of leaf chemistry to the treatments. There was no evidence for a cost of allocation to chemical defense: genetic correlations within and between chemical pathways and between defensive chemicals and aboveground growth were positive or nonsignificant. Although iridoid glycosides are known to be qualitative feeding stimulants for J. coenia, multiple regression of larval survivorship on leaf chemical content and shoot biomass indicated that larvae had lower survivorship on P. lanceolata ge-notypes with higher concentrations of aucubin in the leaves. Larval survivorship was unaffected by levels of catalpol and verbascoside. Thus, although specialist herbivores may respond to defensive chemicals as qualitative feeding stimulants, they do not necessarily have higher fitness on plant genotypes containing higher concentrations of these chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号