首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD150 (SLAM/IPO-3) is a cell surface receptor that, like the B cell receptor, CD40, and CD95, can transmit positive or negative signals. CD150 can associate with the SH2-containing inositol phosphatase (SHIP), the SH2-containing protein tyrosine phosphatase (SHP-2), and the adaptor protein SH2 domain protein 1A (SH2D1A/DSHP/SAP, also called Duncan's disease SH2-protein (DSHP) or SLAM-associated protein (SAP)). Mutations in SH2D1A are found in X-linked lymphoproliferative syndrome and non-Hodgkin's lymphomas. Here we report that SH2D1A is expressed in tonsillar B cells and in some B lymphoblastoid cell lines, where CD150 coprecipitates with SH2D1A and SHIP. However, in SH2D1A-negative B cell lines, including B cell lines from X-linked lymphoproliferative syndrome patients, CD150 associates only with SHP-2. SH2D1A protein levels are up-regulated by CD40 cross-linking and down-regulated by B cell receptor ligation. Using GST-fusion proteins with single replacements of tyrosine at Y269F, Y281F, Y307F, or Y327F in the CD150 cytoplasmic tail, we found that the same phosphorylated Y281 and Y327 are essential for both SHP-2 and SHIP binding. The presence of SH2D1A facilitates binding of SHIP to CD150. Apparently, SH2D1A may function as a regulator of alternative interactions of CD150 with SHP-2 or SHIP via a novel TxYxxV/I motif (immunoreceptor tyrosine-based switch motif (ITSM)). Multiple sequence alignments revealed the presence of this TxYxxV/I motif not only in CD2 subfamily members but also in the cytoplasmic domains of the members of the SHP-2 substrate 1, sialic acid-binding Ig-like lectin, carcinoembryonic Ag, and leukocyte-inhibitory receptor families.  相似文献   

2.
Activation of epidermal growth factor (EGF) receptors stimulates inositol phosphate production in rat hepatocytes via a pertussis toxin-sensitive mechanism, suggesting the involvement of a G protein in the process. Since the first event after receptor-G protein interaction is exchange of GTP for GDP on the G protein, the effect of EGF was measured on the initial rates of guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) association and [alpha-32P]GDP dissociation in rat hepatocyte membranes. The initial rate of [35S]GTP gamma S binding was stimulated by EGF, with a maximal effect observed at 8 nM EGF. EGF also increased the initial rate of [alpha-32P]GDP dissociation. The effect of EGF on [35S]GTP gamma S association was blocked by boiling the peptide for 5 min in 5 mM dithiothreitol or by incubation of the membranes with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). EGF-stimulated [35S]GTP gamma S binding was completely abolished in hepatocyte membranes prepared from pertussis toxin-treated rats and was inhibited in hepatocyte membranes that were treated directly with the resolved A-subunit of pertussis toxin. The amount of guanine nucleotide binding affected by occupation of the EGF receptor was approximately 6 pmol/mg of membrane protein. Occupation of angiotensin II receptors, which are known to couple to G proteins in hepatic membranes, also stimulated [35S]GTP gamma S association with and [alpha-32P]GDP dissociation from the membranes. The effect of angiotensin II on [alpha-32P]GDP dissociation was blocked by the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II, demonstrating that the guanine nucleotide binding was receptor-mediated. In A431 human epidermoid carcinoma cells, EGF stimulates inositol lipid breakdown, but the effect is not blocked by treatment of the cells with pertussis toxin. In these cells, EGF had no effect on [35S]GTP gamma S binding. Occupation of the beta-adrenergic receptor in A431 cell membranes with isoproterenol did stimulate [35S] GTP gamma S binding, and the effect could be completely blocked by l-propranolol. These results support the concept that in hepatocyte membranes, EGF receptors interact with a pertussis toxin-sensitive G protein via a mechanism similar to other hormone receptor-G protein interactions, but that in A431 human epidermoid carcinoma cells, EGF may activate phospholipase C via different mechanisms.  相似文献   

3.
We have used panels of somatic cell hybrids and fluorescent in situ hybridization to determine the chromosomal localization of the novel nontransmembrane tyrosine phosphatase PTPN6 (protein tyrosine phosphatase, nonreceptor type 6), which contains two SH2 domains. PTPN6 maps to 12p13, a region commonly involved in leukemia-associated chromosomal abnormalities. Since PTPN6 is expressed at high levels in hematopoietic cells of all lineages and its expression is induced early in hematopoietic differentiation, altered expression and/or structure of PTPN6 may play a role in leukemogenesis.  相似文献   

4.
5.
Tyrosine phosphorylation of the cell cycle regulator p27Kip1 plays a crucial role in its binding to cyclin dependent kinases and its subcellular localization. While Src and Bcr-Abl were shown to be responsible for tyrosine phosphorylation, no data are available on the dephosphorylation of p27Kip1 and the phosphatase involved. Considering the associated dephosphorylation as a pivotal event in the regulation of cell cycle proteins, we focused on the tyrosine phosphatase SHP-2, which is regulated in promyelocytic leukemia cells on G-CSF stimulation. SHP-2 was thus found in association with p27Kip1 and the G-CSF receptor, and we observed a nuclear translocation of SHP-2 on G-CSF stimulation. Using a catalytically inactive form of SHP-2 and siRNA directed against SHP-2, we could demonstrate the involvement of SHP-2 in tyrosine dephosphorylation of p27Kip1. Moreover, SHP-2 was strongly activated on G-CSF stimulation and specifically dephosphorylated p27Kip1 in vitro. Most importantly, we could illustrate that SHP-2 modulates p27Kip1 stability and contributes to p27Kip1-mediated cell cycle progression. Taken together, our results demonstrate that SHP-2 is a key regulator of p27Kip1 tyrosine phosphorylation.  相似文献   

6.
Current models of Fc gamma R signal transduction in monocytes describe a molecular cascade that begins upon clustering of Fc gamma R with the phosphorylation of critical tyrosine residues in the cytoplasmic domains of Fc gamma RIIa or the gamma-chain subunit of Fc gamma RI and Fc gamma RIIIa. The cascade engages several other tyrosine-phosphorylated molecules, either enzymes or adapters, to manifest ultimately an array of biological responses, including phagocytosis, cell killing, secretion of a variety of inflammatory mediators, and activation. Continuing to assess systematically the molecules participating in the cascade, we have found that the SH2-containing 5'-inositol phosphatase (SHIP) is phosphorylated on tyrosine early and transiently after Fc gamma R clustering. This molecule in other systems, such as B cells and mast cells, mediates an inhibitory signal. We find that clustering of either Fc gamma RIIa or Fc gamma RI is effective in inducing SHIP phosphorylation, that SHIP binds in vitro to a phosphorylated immunoreceptor tyrosine-based activation motif, peptide from the cytoplasmic domain of Fc gamma RIIa in activation-independent fashion, although SHIP binding increases upon cell activation, and that Fc gamma RIIb and Fc gamma RIIc are not responsible for the observed SHIP phosphorylation. These findings prompt us to propose that SHIP inhibits Fc gamma R-mediated signal transduction by engaging immunoreceptor tyrosine-based activation motif-containing cytoplasmic domains of Fc gamma RIIa and Fc gamma RI-associated gamma-chain.  相似文献   

7.
To determine whether a cloned receptor coupled to pertussis toxin (PTx)-sensitive G-proteins can induce cell proliferation and oncogenic transformation, as observed for receptors that elicit PTx-insensitive enhancement of phosphatidyl inositol (PI)-specific phospholipase-C (PLC) activity, nontransformed murine BALB/c-3T3 cells were transfected with the rat serotonin-1A (5-HT1A) receptor. The 5-HT1A receptor is coupled to PTx-sensitive G-proteins to induce a cell-specific activation of PLC. While 1 microM 5-HT induced no change in PI turnover or cytosolic free calcium levels ([Ca2+]i) in receptor-negative nontransfected 3T3 cells, 5-HT induced a 2-fold increase in inositol trisphosphate accumulation and a 2.5-fold increase in [Ca2+]i in the 3T3-ZD8 clone, which expressed 0.6 +/- 0.2 pmol/mg protein of specific 5-HT1A binding sites. The stimulatory actions of 5-HT on PI turnover and [Ca2+]i in 3T3ZD8 cells displayed the pharmacology of the 5-HT1A receptor and were abolished by pretreatment with PTx. Thus, BALB/c-3T3 fibroblast cells express the PLC-linked pathway of the 5-HT1A receptor. Overnight treatment with 5-HT (1 microM) enhanced incorporation of [3H]thymidine into DNA extracted from serum-starved 3T3ZD-8 cells, an action that was also blocked by pretreatment with pertussis toxin. Long term (1-2 weeks) exposure to 5-HT in the medium led to phenotypic transformation of the cells, including the formation of foci with 1 microM 5-HT. These actions of 5-HT were not observed in untransformed 3T3 cells. We conclude that the PTx-sensitive PLC-linked pathway of the 5-HT1A receptor expressed in nontransformed BALB/c-3T3 cells, in concert with other serum-derived factors, predisposes the cells to enhanced proliferation and transformation.  相似文献   

8.
Protein tyrosine phosphatase receptor type Z (Ptprz/PTPzeta/RPTPbeta) is a receptor-like protein tyrosine phosphatase (RPTP) preferentially expressed in the brain. ErbB4 is a member of the ErbB-family tyrosine kinases known as a neuregulin (NRG) receptor. Both are known to bind to postsynaptic density-95 (PSD95) on the second and the first/second PDZ (PSD95/Disc large/zona occludens1) domains, respectively, through the PDZ-binding motif of their carboxyl termini. Here we report a functional interaction between Ptprz and ErbB4. An intracellular carboxyl-terminal region of Ptprz pulled-down PSD95 and ErbB4 from an adult rat synaptosomal preparation. ErbB4 and Ptprz showed co-localization in cell bodies and apical dendrites of neurons in the prefrontal cortex. In HEK293T cells, phosphorylation of ErbB4 was raised by co-expression of PSD95, which was repressed by additional expression of Ptprz. In vitro experiments using the whole intracellular region (ICR) of ErbB4 also showed that PSD95 stimulates the autophosphorylation of ErbB4, and that the ICR of Ptprz dephosphorylates ErbB4 independent of the presence of PSD95. Taken together with the finding that the tyrosine phosphorylation level of ErbB4 was increased in Ptprz-deficient mice, these results suggest that Ptprz has a role in suppressing the autoactivation of ErbB4 by PSD95 at the postsynaptic density in the adult brain.  相似文献   

9.
The effects of galanin (7-70 nM) on ATP-sensitive K+ channels (KATP channels), membrane potential and the release of insulin have been studied in the insulinoma cell line, RINm5F. Single-channel currents have been recorded from excised outside-out membrane patches as well as intact insulin-secreting cells and it is shown that galanin, added to the outside of the membrane, specifically activates KATP channels. Studies carried out using the fluorescent probe bisoxonol demonstrate that galanin hyperpolarizes RINm5F cells. Galanin was also found to abolish glyceraldehyde-stimulated immunoreactive insulin release from the insulinoma cells. Both the galanin-evoked hyperpolarization and inhibition of insulin release were abolished in cells pre-exposed to pertussis toxin. The possibility that the gating of KATP channels could be mediated by a G-protein was studied in patch-clamp experiments by adding F- to the solution bathing the inside of the cell membranes (open-cell), in order to generate the alumino-fluoride complex AlF4-. F- (1-10 mM) evoked dose-dependent activation of KATP channels and this effect was fully reversible. F- was also able to activate K+ channels inhibited by ATP. That the fluoride activation of KATP channels is mediated by the complex AlF4- was indicated by experiments in which AlCl3 (10 microM) was found to enhance further the activation of K+ channels evoked by 1 mM F- and by results showing that F(-)-stimulation of KATP channels was (i) abolished in the continued presence of F- by the Al3+ chelator deferoxamine (0.5 mM) and (ii) could be mimicked by VO4(3-) which has a structure similar to that of the AlF4- complex.  相似文献   

10.
Src homology 2-containing phosphotyrosine phosphatase (Shp2) functions as a positive effector in receptor tyrosine kinase (RTK) signaling immediately proximal to activated receptors. However, neither its physiological substrate(s) nor its mechanism of action in RTK signaling has been defined. In this study, we demonstrate that Sprouty (Spry) is a possible target of Shp2. Spry acts as a conserved inhibitor of RTK signaling, and tyrosine phosphorylation of Spry is indispensable for its inhibitory activity. Shp2 was able to dephosphorylate fibroblast growth factor receptor-induced phosphotyrosines on Spry both in vivo and in vitro. Shp2-mediated dephosphorylation of Spry resulted in dissociation of Spry from Grb2. Furthermore, Shp2 could reverse the inhibitory effect of Spry on FGF-induced neurite outgrowth and MAP kinase activation. These findings suggest that Shp2 acts as a positive regulator in RTK signaling by dephosphorylating and inactivating Spry.  相似文献   

11.
Fluid flow and several other agonists induce prostacyclin (PGI2) production in endothelial cells. G proteins mediate the response of a large number of hormones such as histamine, but the transduction pathway of the flow signal is unclear. We found that GDP beta S and pertussis toxin inhibited flow-induced prostacyclin production in human umbilical vein endothelial cells. In addition, flow potentiated the histamine-induced production of PGI2. This suggests that flow stimulates prostacyclin production via a pertussis toxin-sensitive G protein and modulates the stimulus-response coupling of other agonists.  相似文献   

12.
At different concentrations, prostaglandin E2 (PGE2) can either stimulate or inhibit cAMP formation in freshly isolated rabbit cortical collecting tubule (RCCT) cells, but in cultured RCCT cells PGE2 can only stimulate cAMP synthesis (Sonnenburg, W. K., and Smith W. L. (1989) J. Biol. Chem. 263, 6155-6160). Here, we report characteristics of [3H]PGE2 binding to membrane receptor preparations from both freshly isolated and cultured RCCT cells. [3H]PGE2 binding to membranes from freshly isolated RCCT cells was saturable and partially reversible. Equilibrium binding analyses indicated that in the absence of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) there is a single class of PGE2 binding sites (KD = 4.2 +/- 0.4 nM; Bmax = 583 +/- 28 fmol/mg); in the presence of 100 microM GTP gamma S, there is also only one class of binding sites but with a somewhat lower KD = 1.2 +/- 0.5 nM (Bmax = 370 +/- 40 fmol/mg). This stimulatory effect of GTP gamma S was blocked by pretreatment of the freshly isolated RCCT cells with pertussis toxin. The relative affinities of prostanoids for the [3H]PGE2-binding site were determined to be 17,18,19,20-tetranor-16-phenoxy-PGE2-methylsulfonylamide (sulprostone) approximately PGE2 approximately PGE1 approximately 16,16-dimethyl-PGE2 greater than carbacyclin approximately PGF2 alpha greater than PGD2. This is the order of potency with which prostaglandins inhibit arginine vasopressin-induced cAMP formation in fresh RCCT cells. Interestingly, [3H]PGE2 binding to membranes from cultured cells, which, unlike fresh cells, fail to show an inhibitory response to PGE2, was only 10-20% of that observed with membranes from fresh cells; moreover, binding of [3H]PGE2 to membranes from cultured cells was neither stimulated by GTP gamma S nor inhibited by sulprostone. The prostanoid binding specificities and the unusual pertussis toxin-sensitive, stimulatory effect of GTP gamma S on binding of [3H]PGE2 to membranes from freshly isolated RCCT cells are characteristics shared by a Gi-linked PGE receptor from renal medulla (Watanabe, T., Umegaki, K., and Smith, W. L. (1986) J. Biol. Chem. 261, 14340-14349). Our results suggest that the [3H]PGE2 binding site of freshly isolated RCCT cells is the PGE receptor which is coupled to a Gi to attenuate arginine vasopressin-induced cAMP synthesis in the renal collecting tubule.  相似文献   

13.
A cDNA clone encoding a novel, widely expressed protein (called growth factor receptor-bound protein 2 or GRB2) containing one src homology 2 (SH2) domain and two SH3 domains was isolated. Immunoblotting experiments indicate that GRB2 associates with tyrosine-phosphorylated epidermal growth factor receptors (EGFRs) and platelet-derived growth factor receptors (PDGFRs) via its SH2 domain. Interestingly, GRB2 exhibits striking structural and functional homology to the C. elegans protein sem-5. It has been shown that sem-5 and two other genes called let-23 (EGFR like) and let-60 (ras like) lie along the same signal transduction pathway controlling C. elegans vulval induction. To examine whether GRB2 is also a component of ras signaling in mammalian cells, microinjection studies were performed. While injection of GRB2 or H-ras proteins alone into quiescent rat fibroblasts did not have mitogenic effect, microinjection of GRB2 together with H-ras protein stimulated DNA synthesis. These results suggest that GRB2/sem-5 plays a crucial role in a highly conserved mechanism for growth factor control of ras signaling.  相似文献   

14.
Interaction of interleukin 2 (IL2) with its high affinity membrane receptor complex (IL2R) is sufficient to induce proliferation of T lymphocytes. However, the biochemical mechanisms by which IL2 induces this process remain unresolved. The IL2R complex consists of at least two distinct polypeptides that bind IL2, a 75-kDa intermediate affinity subunit (IL2R beta) and a 55-kDa low affinity subunit (IL2R alpha). As indicated by Western blotting with anti-phosphotyrosine-specific antibodies and confirmed by phosphoamino acid analysis, we now demonstrate that interaction of the T cell growth factor interleukin 2 (IL2) with its high affinity receptor on IL2-sensitive human peripheral blood lymphoblasts induces tyrosine phosphorylation of proteins of 92, 80, 78, 70-75, and 57 kDa. IL2 induced tyrosine phosphorylation in YT 2C2 cells which express only the 75-kDa intermediate affinity IL2 binding molecule (IL2R beta) but not in cells which either express only the 55-kDa low affinity IL2 receptor molecule (IL2R alpha) or no IL2-binding sites. Therefore, IL2R beta, in the absence of IL2R alpha, appears sufficient to transduce the transmembrane signal leading to tyrosine phosphorylation. Two different antibodies reactive with phosphotyrosine specifically immunoprecipitated IL2R beta cross-linked to radiolabeled IL2. These findings suggest that IL2R beta is a substrate for the tyrosine kinase which is activated by IL2 binding to its receptor. Thus, like several other growth factor receptors, activation of the IL2R results in an increase in tyrosine phosphorylation with the receptor itself serving as one substrate.  相似文献   

15.
Dopaminergic inhibition of prolactin release from the anterior pituitary may be mediated through both the adenylate cyclase and Ca2+ mobilization/phosphoinositide pathways. The D2-dopamine receptor of the bovine anterior pituitary has been partially purified by affinity chromatography on CMOS-Sepharose (immobilized carboxymethyleneoximinospiperone). Reinsertion of these partially purified receptor preparations into phospholipid vesicles reconstituted guanine nucleotide-sensitive high affinity agonist binding, agonist-promoted GTPase and 35S-labeled guanosine 5'-O-(thiotriphosphate) [( 35S]GTP gamma S) binding activity in these preparations. Pertussis toxin treatment of the purified receptor preparation abolished agonist-stimulated GTPase and guanine nucleotide-sensitive high affinity agonist binding. These observations suggest that the receptor copurifies with an endogenous, pertussis toxin-sensitive guanine nucleotide binding protein (N). [32P]ADP-ribosylation of affinity-purified D2 receptor preparations by pertussis toxin revealed the presence of a substrate of Mr 39,000-40,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Peptide maps generated using elastase of the [32P]ADP-ribosylated endogenous N protein, transducin, and Ni and No from brain revealed similarities but not identity between the endogenous pituitary N protein and brain Ni and No. Immunoblotting of the partially purified D2 receptor preparations showed an Mr 39,000-40,000 band with an Ni-specific antiserum raised against a synthetic peptide, and with RV3, an No-specific anti-serum, but not with CW6, an antiserum strongly reactive with brain Ni. Several lines of evidence indicate that endogenous pituitary N protein is functionally coupled to the D2 receptor. As measured by [35S]GTP gamma S binding, ratios of 0.2-0.6 mol N protein/mol receptor were observed. Association of N protein with the D2 receptor was increased by agonist pretreatment and decreased by guanine nucleotides. These results suggest that No and/or a form of Ni distinct from the Mr 41,000 pertussis toxin substrate (Ni) is the predominant N protein functionally coupled with the D2-dopamine receptor of anterior pituitary.  相似文献   

16.
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling.  相似文献   

17.
A J Garton  N K Tonks 《The EMBO journal》1994,13(16):3763-3771
The protein tyrosine phosphatase PTP-PEST is an 88 kDa cytosolic enzyme which is ubiquitously expressed in mammalian tissues. We have expressed PTP-PEST using recombinant baculovirus, and purified the protein essentially to homogeneity in order to investigate phosphorylation as a potential mechanism of regulation of the enzyme. PTP-PEST is phosphorylated in vitro by both cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC) at two major sites, which we have identified as Ser39 and Ser435. PTP-PEST is also phosphorylated on both Ser39 and Ser435 following treatment of intact HeLa cells with TPA, forskolin or isobutyl methyl xanthine (IBMX). Phosphorylation of Ser39 in vitro decreases the activity of PTP-PEST by reducing its affinity for substrate. In addition, PTP-PEST immunoprecipitated from TPA-treated cells displayed significantly lower PTP activity than enzyme obtained from untreated cells. Our results suggest that both PKC and PKA are capable of phosphorylating, and therefore inhibiting, PTP-PEST in vivo, offering a mechanism whereby signal transduction pathways acting through either PKA or PKC may directly influence cellular processes involving reversible tyrosine phosphorylation.  相似文献   

18.
Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream β1 integrin-mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of interaction with CD148. A mechanism for the transduction of the signal from CD148 to β1 integrins is elucidated requiring Src kinase and potential implication of the C2β isoform of phosphatidylinositol 3 kinase. Our data uncover a novel pathway for β1 integrin-mediated adhesion of importance in cellular processes such as angiogenesis and inflammation.  相似文献   

19.
We have recently reported that glucagon activated the L-type Ca2+ channel current in frog ventricular myocytes and showed that this was linked to the inhibition of a membrane-bound low-Km cAMP phosphodiesterase (PDE) (Méry, P. F., Brechler, V., Pavoine, C., Pecker, F., and Fischmeister, R. (1990) Nature 345, 158-161). We show here that the inhibition of membrane-bound PDE activity by glucagon depends on guanine nucleotides, a reproducible inhibition of 40% being obtained with 0.1 microM glucagon in the presence of 10 microM GTP, with GTP greater than GTP gamma S, while GDP and ATP gamma S were without effect. Glucagon had no effect on the cytosolic low-Km cAMP PDE, assayed with or without 10 microM GTP. Glucagon inhibition of membrane-bound PDE activity was not affected by pretreatment of the ventricle particulate fraction with cholera toxin. However, it was abolished after pertussis toxin pretreatment. Mastoparan, a wasp venom peptide known to activate G(i)/G(o) proteins directly, mimicked the effect of glucagon. PDE inhibition by glucagon was additive with the inhibition induced by Ro 20-1724, but was prevented by milrinone. This was correlated with an increase by glucagon of cAMP levels in frog ventricular cells which was not additive with the increase in cAMP due to milrinone. We conclude that glucagon specifically inhibits the cGMP-inhibited, milrinone-sensitive PDE (CGI-PDE). Insensitivity of adenylylcyclase to glucagon and inhibition by the peptide of a low-Km cAMP PDE were not restricted to frog heart, but also occurred in mouse and guinea pig heart. These results confirm that two mechanisms mediate the action of glucagon in heart: one is the activation of adenylylcyclase through Gs, and the other relies on the inhibition of the membrane-bound low-Km CGI-PDE, via a pertussis toxin-sensitive G-protein.  相似文献   

20.
Human neutrophils and HL60 cells respond to extracellular ATP by causing exocytotic secretion. Secretion is accompanied by increases in inositol phosphates and a rise in cytosol Ca2+. The responses to ATP are blocked by pertussis toxin pretreatment, indicating the involvement of a guanine nucleotide regulatory protein. Other nucleotides that are active in promoting secretion are ATP gamma S, UTP, ITP and AppNHp, whilst 8-bromo-ATP, AppCH2p, ADP, AMP and adenosine are inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号