首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shifts of the steady potential level (SPL), recorded with non-polarized electrodes, and the changes in bioelectrochemical potential (BEChPs), recorded with platinum electrodes, were led from the rabbit brain surface in chronic experiments. The stimuli, that were new for the animal, caused only SPL shifts (0.1-0.3 mv), BEChPs showing no changes. BEChPs changed (by tenths to several millivolts) only in the process of the conditioned reflex formation, during the pairing of the conditioned and reinforcing stimuli, during which the shifts of SPL were also observed (up to 0.5-1 mv), different from the ones during the orienting reflex. Simultaneous recording of the SPL shifts and the changes in BEChPs showed that these phenomena are external manifestations of independent processes. It is suggested that the brain activity involved in the perception and the analysis of the informational value of a new stimulus, is connected with bioelectrical processes, rather than with the metabolic ones. During the formation of the defensive conditioned reflex, along with the enhancing of the activity connected with bioelectrical processes, other type of activity appears which is accompanied with considerable metabolic shifts.  相似文献   

2.
Local cortex E variations are well expressive indices of rate and peculiarities of energy metabolism. The brain E is determined by the ratio of processes occurring in two energy compartments in glycolysis, in whish glucose is split without oxygen utilization and in oxidative metabolism. In the present investigation, the brain cortex E changes were recorded with implanted platinum electrodes during slow wave sleep. Under such conditions, the E lowering detects acceleration in glycolytic compartment, whereas the E local rising shows acceleration in oxidative metabolism in the tissue surrounding the electrode. Earlier in rats, we have found that E significantly lowered in metabolic active cortical sites during episodes of SWS, and supposed that acceleration of glycolysis increased. Slow oscillations (a 20-40-sec prolongation of the amplitude up to several dozens millivolts) appeared at the same time. We considered these E slow oscillations to reflect changes in the rate in compartment of glycolysis. In this research, we have found the E slow oscillations to be created by regular episodes of ECoG-arousal which were accompanied by E decreases, i. e. by acceleration in glycolysis. We think the data presented show existence of functional system supporting a low level of arousal. As in any complex system with feed back connections, this system works in oscillatory regime.  相似文献   

3.
Potential changes both in pre- and postsynaptic axons were recorded from the giant synapse of squid with intracellular electrodes. Synaptic current was also recorded by a voltage clamp method. Facilitation of postsynaptic potential caused by applying two stimuli several milliseconds apart was accompanied by an increase in the amplitude of the presynaptic action potential. Depression of the postsynaptic potential occurred without changes in the presynaptic action potential. Increase in the concentration of Ca in sea water caused an increase in amplitude of the synaptic current. On the other hand increase in Mg concentration decreased the amplitude of the synaptic current. In these cases no appreciable change in the presynaptic action potential was observed. Extracellularly recorded potential changes of the presynaptic axon showed mainly a positive deflexion at the synaptic region and a negative deflexion in the more proximal part of the presynaptic axon. Mechanism of synaptic transmission is discussed.  相似文献   

4.
Somatosensory evoked potentials (SEP) to ipsilateral and contralateral median nerve stimulations were recorded from subdural electrode grids over the perirolandic areas in 41 patients with medically refractory focal epilepsies who underwent evaluation for epilepsy surgery. All patients showed clearly defined, high-amplitude contralateral median SEPs. In addition, four patients showed ipsilateral SEPs. Compared with the contralateral SEPs, ipsilateral SEPs were very localized, had a different spatial distribution, were of considerably lower amplitude, had a longer latency (1.2–17.8 ms), did not show an initial negativity, and were markedly attenuated during sleep. Stimulation of the subdural electrodes overlying the sensory hand area was associated with contralateral hand paresthesias, but no ipsilateral hand paresthesias occurred. It was concluded that subdurally recorded cortical SEPs to ipsilateral stimulation of the median nerve (M) reflect unconscious sensory input from the hand possibly serving fast bimanual hand control. The anatomical pathway of these ipsilateral short-latency MSEPs is not yet known. Transcallosal transmission seems unlikely because of the short delay between the ipsilateral and contralateral responses in selected cases. The infrequent occurrence of ipsilateral subdurally recorded SEPs and their low amplitude and limited distribution suggest that they contribute very little to the short-latency ipsilateral median SEPs recorded on the scalp.  相似文献   

5.
1. Recordings of dendritic potentials and sustained potential shifts (SPS) were made from the brain of immobilised frogs during surface tectal electrical stimulation. 2. Single pulses evoked dendritic responses; trains caused decay of dendritic responses on the background of the evoked SPS. 3. The tectal surface SPS declined with distance from the stimulating electrode. 4. The negative surface SPS declined with tectal depth to ca 300 microns, then reversed polarity and increased in amplitude with depth up to 700 microns.  相似文献   

6.
Brain energy metabolism in different functional states or activities of humans and animals is characterized by dynamic changes in the degree of coupling between glycolysis and tissue respiration in different cell compartments (Fox et al., 1988; Fox, 1989; Pellerin et Magistretti, 1994; Prichard et al., 1991; Schur et al., 1999). These processes determine variations in the brain redox state (Siesjo, 1978) that can be potentiometrically recorded with implanted platinum electrodes as the brain tissue redox state potential E (Puppi et Fely, 1983). This potential was recorded in rat brain cortex with four pairs of platinum electrodes implanted into different symmetrical cortical region (one electrode of a pair being located in the cortical layers, another being located epidurally). In the course of defensive conditioning (after 5-15 combination of a bulb light and a weak electrodermal stimulation of a ear), E oscillations (6-10 per minute) appeared. In this period, stimuli combinations produced the generalized E shifts. Later on (with accumulation of stimuli combinations), the episodes of E increase were replaced by the episodes of E decrease. To the 200-400th combinations, E oscillations disappeared, and E shifts became local and stable. The findings suggest that conditioning shifts the balance between the main energy-producing systems in the brain tissue: at the initial stages of conditioning brain functions are predominantly supported by the energy obtained from tissue respiration, while during the realization of defensive conditioning glycolysis is the main source of energy.  相似文献   

7.
Fujio Takahashi  Ryoichi Kikuchi 《BBA》1976,430(3):490-500
By the conversion of sunlight to chemical energy, photoelectrolysis was carried out using two different chlorophyll-redox compound lining electrodes. These electrodes were prepared by covering platinum plates with chlorophyll and naphthoquinone or anthrahydroquinone and a conducting adhesive. These electrodes exhibit a photoexciting property. The potential was found to shift to a less noble state when the system of the chlorophyll-naphthoquinone electrode was inserted into NAD solution with illumination. On the other hand, the photoexcitation of the system of the chlorophyll-anthrahydroquinone electrode inserted into ferrocyanide solution made the potential more noble. (If the potential in the dark is in the positive region of the scheme
and the potential moves in the positive direction when the light is turned on, it can be said to be more positive or more noble. But if the potential moves in the negative direction in the light, but remains in the positive region, it can be said to become less noble, but it is not suitable to say that it becomes more negative.) To make the potential difference between two electrodes as big as possible, various factors such as intensity of illumination, molar ratio of chlorophyll to naphthoquinone or anthrahydroquinone and concentration of redox compound in electrolyte were examined.A cell was set up by combining the system of the chlorophyll-naphthoquinone electrode in NAD solution with that of the chlorophyll-anthrahydroquinone electrode in ferrocyanide solution, and photoelectrolysis was carried out by closing the external circuit with illumination. The photovoltage between the two electrodes was 0.25 V and the current density was 8 μA/cm2. It was found that NAD was reduced to form NADH at the chlorophyll-naphthoquinone electrode and ferrocyanide was oxidized to form ferricyanide at the chlorophyll-anthrahydroquinone electrode.  相似文献   

8.
The relation of the hippocampal neuronal activity to the rat event-related potential (ERP) generation was examined during an auditory discrimination oddball paradigm. ERPs were recorded using a linearly-arranged series of electrodes chronically implanted at the skull, in the frontoparietal cortex, in the CA1 and CA3 regions of the dorsal hippocampus and in the thalamus. The target tone elicited N40, P100, N200, and P450 at the skull electrode. The non-target tone, on the other hand, prominently evoked only the P100 component. At the intracranial electrodes, the ERP amplitude at the latency of the skull P450 was significantly greater in the CA3 region than that at other recording sites, although a phase reversal was not observed. The results indicate that the P450 of the rat may correspond to the human P3, and that the neuronal activity in the hippocampus is involved in its generation.  相似文献   

9.
Evoked potentials to the primary colours red, green, yellow and blue were recorded and compared with those evoked by white. The unpatterned 10° × 13° stimuli were generated with the aid of a colour monitor. Activity was depicted with 5 electrodes, the central electrode 5 cm above the inion and two on each side 5 and 10 cm apart from the central electrode.With equally bright colour stimuli a previously described early negative colour-dominated component N87 was localized in all subjects at the central occipital electrode while the following positivity P100 was clearly more lateralized to the peripheral electrodes. With half-field stimulation N87 showed a similar — paradoxical — lateralization to the ipsilateral electrodes as has been demonstrated for pattern reversal.The existence and localization of N87 could be confirmed also for blue colours, its amplitude independent of the blue luminance, its latency decreasing for definite additional brightness increments and decrements. The N87 to blue was of the same latency as the N87 components to other colours.N87 is mainly generated foveally and parafoveally, its amplitude saturates with stimuli larger than 6–8° in diameter.  相似文献   

10.
To understand the relationship between the propagation direction of action potentials and dendritic Ca(2+) elevation, simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and intradendritic membrane potential were performed in the wind-sensitive giant interneurons of the cricket. The dendritic Ca(2+) transients induced by synaptically-evoked action potentials had larger amplitudes than those induced by backpropagating spikes evoked by antidromic stimulation. The amplitude of the [Ca(2+)](i) changes induced by antidromic stimuli combined with subthreshold synaptic stimulation was not different from that of the Ca(2+) increases evoked by the backpropagating spikes alone. This result means that the synaptically activated Ca(2+) release from intracellular stores does not contribute to enhancement of Ca(2+) elevation induced by backpropagating spikes. On the other hand, the synaptically evoked action potentials were also increased at distal dendrites in which the Ca(2+) elevation was enhanced. When the dendritic and axonal spikes were simultaneously recorded, the delay between dendritic spike and ascending axonal spike depended upon which side of the cercal nerves was stimulated. Further, dual intracellular recording at different dendritic branches illustrated that the dendritic spike at the branch arborizing on the stimulated side preceded the spike recorded at the other side of the dendrite. These results suggest that the spike-initiation site shifts depending on the location of the activated postsynaptic site. It is proposed that the difference of spike propagation manner could change the action potential waveform at the distal dendrite, and could produce synaptic activity-dependent Ca(2+) dynamics in the giant interneurons.  相似文献   

11.
When a voluntary adult male contracted his leg muscles, electric potential differences were recorded between platinum electrodes positioned inside the vena cava or between the vena cava and the grounded skin. Two experiments confirm that potential differences at leg contractions in man have a similar appearance as those in the rat at pain-evoked contractions of leg muscles. Platinum electrodes were used in man. The potential differences obtained are thereafter compared with recordings with Ag-AgCl electrodes in salt-bridges in the rat. Slow potential waves with superimposed irregular potential oscillations are recorded in man as previously found in the rat using platinum or Ag-AgCl electrodes. The findings indicate that vascular-interstitial routes participate in a vascular-interstitial-neuromuscular closed circuit, which is activated at contraction of the muscles.  相似文献   

12.
Steady-state auditory evoked potentials (SSAEPs) were recorded in rabbits with both surface and depth electrodes. Surface recording from the bregma provided the largest and most typical SSAEPs as compared to other surface locations when a stimulus rate of 50 Hz was used. The medial geniculate body (MGB) showed no potential corresponding to the surface SSAEP. On the other hand, the latency of SSAEP in the inferior colliculus (IC) corresponded closely to that of the surface potential. Furthermore, the amplitude of the IC potential tended to become large with the stimulus rate of 50 Hz as compared with transient stimuli. Although other auditory nuclei in the brain-stem, the ventral nucleus of the lateral lemniscus, the trapezoid body and the auditory nerve responded to transient stimuli with an amplitude larger than that of the IC, no amplification occurred with 50 Hz stimuli in these nuclei. These findings suggest that the IC contributes to the generation of SSAEP to a great extent.  相似文献   

13.
Microbial Detection Method Based on Sensing Molecular Hydrogen   总被引:11,自引:8,他引:3       下载免费PDF全文
A simple method for detecting bacteria, based on the time of hydrogen evolution, was developed and tested against various members of the Enterobacteriaceae group. The test system consisted of (i) two electrodes, platinum and a reference electrode, (ii) a buffer amplifier, and (iii) a strip-chart recorder. Hydrogen evolution was measured by an increase in voltage in the negative (cathodic) direction and recorded on a strip-chart recorder. Hydrogen response curves consisted of (i) a lag period, (ii) a period of rapid buildup in potential due to hydrogen, and (iii) a period of decline in potential. A linear relationship was established between inoculum size and the time hydrogen was detected (lag period). Lag times ranged from 1 h for 10(6) cells/ml to 7 h for 10(0) cells/ml. For each 10-fold decrease in inoculum, length of the lag period increased 60 to 70 min. Mean cell concentrations at the time of hydrogen evolution were 10(6)/ml. Based on the linear relationship between inoculum size and lag period, these results indicate the potential application of the hydrogen-sensing method for rapidly detecting coliforms and other gas-producing microorganisms in a variety of clinical, food, and other samples.  相似文献   

14.
Ionic Current Measurements in the Squid Giant Axon Membrane   总被引:17,自引:14,他引:3       下载免费PDF全文
The concepts, experiments, and interpretations of ionic current measurements after a step change of the squid axon membrane potential require the potential to be constant for the duration and the membrane area measured. An experimental approach to this ideal has been developed. Electrometer, operational, and control amplifiers produce the step potential between internal micropipette and external potential electrodes within 40 microseconds and a few millivolts. With an internal current electrode effective resistance of 2 ohm cm.2, the membrane potential and current may be constant within a few millivolts and 10 per cent out to near the electrode ends. The maximum membrane current patterns of the best axons are several times larger but of the type described by Cole and analyzed by Hodgkin and Huxley when the change of potential is adequately controlled. The occasional obvious distortions are attributed to the marginal adequacy of potential control to be expected from the characteristics of the current electrodes and the axon. Improvements are expected only to increase stability and accuracy. No reason has been found either to question the qualitative characteristics of the early measurements or to so discredit the analyses made of them.  相似文献   

15.
We recorded CO2 laser evoked cerebral potentials in 6 healthy subjects using both a standard technique and an oddball paradigm. In the standard technique stimuli were aimed at the dorsum of the left hand with the subject passive; in the oddball paradigm, target infrequent stimuli (P = 0.15) were directed to one side of the dorsum of the left hand and the subject was instructed to count their occurrence, the frequent stimulus being delivered to the other side of the hand. In both standard and oddball frequent recordings, CO2 laser evoked potentials were a well-formed negative-positive complex with a peak latency and amplitude around 305 msec (to positivity) and 32 μV respectively. However, in the oddball target task a later potential was also recorded, with a mean latency and amplitude of 621 msec and 24 μV respectively which we believe to be a laser oddball potential. These results demonstrate that the CO2 potential is not altered by manipulations of attention to any significant extent and suggests that it is therefore closely related to the primary sensory input. They also provide further evidence of the non-specificity of the oddball potential across sensory modalities.  相似文献   

16.
Previous work indicated that components of the auditory thalamocortical potential evoked by a brief binaural tone burst could be enhanced by certain stimulus combinations, e.g., a brief tone burst in the presence of a continuous tone. The principal questions of the present study were whether enhaced components could be obtained caudal to thalamocortex and whether monaural stimuli would be effective in producing enhancement. Eight cats received electrodes in cochlear nucleus and the nucleus of the inferior colliculus. Custom earmolds were made for each ear of each animal. The median attenuation produced by the earmolds was 35 dB and the use of a single earmold approximated monaural stimulation. Auditory evoked potentials were recorded from the electrodes while the animals were unanesthetized but comfortably restrained. Brief 6.25 kHz tone bursts were presented against a background of silence or of a 4.96 kHz continuous tone. In the presence of the continuous tone, enhanced components were obtained from a majority of the electrodes in inferior colliculus but from none of the electrodes in cochlear nucleus. The late negative component in the colliculus potential was increased in amplitude while other components were reduced in amplitude by the continuous tone. The latencies of all components from all electrodes were increased by the presence of the continuous tone. It was concluded that enhancement effects could be obtained at the level of inferior colliculus, and that binaural stimulation does not appear to be necessary to produce enhanced components.  相似文献   

17.
Glucose oxidase electrodes were constructed on a platinum screen using polyacrylamide gel, glutaraldehyde crosslinking, and glutaraldehyde crosslinking with +0.04 volts dc on the platinum screen as the methods of enzyme immobilization. The electrodes were evaluated in an electrochemical cell for the oxidation of glucose at the enzyme electrode and the reduction of oxygen at a platinum auxiliary electrode, using constant current voltametry or under external load operation. The method of immobilization affected the extrapolated opencircuit potential as well as the half-cell potential and the steady current under external load operation. The charged glutaraldehyde electrode gave the best current performance; however, the small output (microamps) indicated that major problems in electron transfer from an enzyme catalyst to an external circuit must be resolved before such electrodes can be used in practical application.  相似文献   

18.
Most physiological studies of the human olfactory system haveconcentrated on the cortical level; the olfactory bulbar levelhas been studied rarely. We attempted to stimulate the humanolfactory mucosa by electrical pulse to detect the bulbar potentials.Electrical stimulation (2 mA, 0.5 ms) of the human olfactorymucosa evoked a change in potential recorded from the frontalsector of the head. A negative peak of the evoked potentialthat occurred at 19.4 ms (grand means, n = 5) after stimulationwas the clearest. The highest amplitude of the potential wasrecorded from the frontal sector of the head on the stimulatedside. Our findings were similar to the experimental resultsobtained from the olfactory bulbs of animals. This evoked potentialwas considered to be the human olfactory bulbar potential. Whenthe subjects were stimulated by applying electricity to theolfactory mucosa, no sensation of smell occurred even thoughevoked potentials were recorded. Evoked potentials were recordedonly when the stimulating electrode was located in the olfactorycleft. When the stimulating electrode was outside the olfactorycleft, the stimulation caused pain. The trigeminal nerve seemedto be stimulated by electricity. Olfactory evoked potentialsproduced by the electrical stimulation of the human olfactorymucosa should aid the research on human olfactory physiology,and may be applicable to clinical tests of olfactory dysfunction.Chem. Senses 22: 77–81, 1997.  相似文献   

19.
Characteristics of spinal cord-evoked responses in man   总被引:1,自引:0,他引:1  
The averaged electrical potentials evoked by the stimulation of the peripheral nerves were recorded with surface electrodes over the lumbosacral, lower thoracic and cervical spine and with epidurally placed electrodes in the cervical area. The waveforms of the lumbosacral and cervical spinal cord potentials show similar complexity reflecting peripheral and central generators. The larger negative wave with at least two components is followed by a slower positive deflection. Evoked potentials recorded over the cervical segments of the spinal cord with epidural electrodes are of much higher amplitude and more complex waveform than those recorded with surface electrodes.  相似文献   

20.
A non-invasive DC electroencephalographic (DC-EEG) method was developed to record and analyze focal low-frequency (<0.1 Hz) DC changes in the human cerebral cortex. A simple repetitive finger-movement task was used as a physiological activation paradigm. DC-EEG amplitudes were recorded using a custom-made DC amplifier with automatic offset correction. A total of 16 standard Ag/AgCl electrodes covered the left primary motor cortex. In three of six subjects, reliable focal motor-related DC-EEG shifts over the hand cortex were monitored. This study demonstrates that refined DC-EEG recording and data analysis procedures allow non-invasive recording of low-frequency and low-amplitude focal cortical changes in humans. An important clinical perspective of this technology is the detection of stroke-associated cortical DC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号