首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feedback control of cyclooxygenase-2 expression through PPARgamma   总被引:5,自引:0,他引:5  
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandins (PG), plays a key role in inflammation, tumorigenesis, development, and circulatory homeostasis. The PGD(2) metabolite 15-deoxy-Delta(12, 14) PGJ(2) (15d-PGJ(2)) was identified as a potent natural ligand for the peroxisome proliferator-activated receptor-gamma (PPARgamma). PPARgamma expressed in macrophages has been postulated as a negative regulator of inflammation and a positive regulator of differentiation into foam cell associated with atherogenesis. Here, we show that 15d-PGJ(2) suppresses the lipopolysaccharide (LPS)-induced expression of COX-2 in the macrophage-like differentiated U937 cells but not in vascular endothelial cells. PPARgamma mRNA abundantly expressed in the U937 cells, not in the endothelial cells, is down-regulated by LPS. In contrast, LPS up-regulates mRNA for the glucocorticoid receptor which ligand anti-inflammatory steroid dexamethasone (DEX) strongly suppresses the LPS-induced expression of COX-2, although both 15d-PGJ(2) and DEX suppressed COX-2 promoter activity by interfering with the NF-kappaB signaling pathway. Transfection of a PPARgamma expression vector into the endothelial cells acquires this suppressive regulation of COX-2 gene by 15d-PGJ(2) but not by DEX. A selective COX-2 inhibitor, NS-398, inhibits production of PGD(2) in the U937 cells. Taking these findings together, we propose that expression of COX-2 is regulated by a negative feedback loop mediated through PPARgamma, which makes possible a dynamic production of PG, especially in macrophages, and may be attributed to various expression patterns and physiological functions of COX-2.  相似文献   

2.
炎症损伤是众多临床疾病的病理学基础,常可引起严重并发症甚至导致死亡。然而传统临床治疗不仅方法有限,且效果不佳。近年研究报道,肿瘤坏死因子α刺激基因/诱导蛋白-6(tumor necrosis factor alpha stimulated gene/inducible protein 6, TSG-6)可通过与体内相应的配体结合参与炎症反应的多个过程,并发挥抗炎和促进细胞外基质重塑等重要作用。本文就TSG-6的生物学特性、作用机制及其在病理性瘢痕、神经炎症、动脉粥样硬化和关节炎等多种疾病中发挥的抗炎作用作一综述。  相似文献   

3.
4.
Cyclooxygenase-2 (COX-2) is an important inducible enzyme in inflammation and is overexpressed in a variety of cancers. Evidence is rapidly accumulating that chronic inflammation may contribute to carcinogenesis through increase of cell proliferation, angiogenesis, and metastasis in a number of neoplasms, including colorectal carcinoma. In the present study, we investigated some mechanistic aspects of DFX-induced hypoxia-driven COX-2 expression. Desferrioxamine (DFX), an iron chelator, is known to upregulate inflammatory mediators. DFX induced the expression of COX-2 and accumulation of HIF-1alpha protein in dose-dependent manners, but hypoxia mimetic agent cobalt chloride (CoCl2) induced accumulation of HIF-1alpha protein but not increase of COX-2 expression. DFX-induced increase of COX-2 expression and HIF-1alpha protein level was attenuated by addition of ferric citrate. This result suggested that the iron chelating function of DFX was important to induce the increase of COX-2 and HIF-1alpha protein. PD98059 significantly inhibited the induction of COX-2 protein and accumulation of HIF-1alpha, suggesting that DFX-induced increase of HIF-1alpha and COX-2 protein was mediated, at least in part, through the ERK signaling pathway. In addition, pretreatment with NS-398 to inhibit COX-2 activity also effectively suppressed DFX-induced HIF-1alpha accumulation in human colon cancer cells, providing the evidence that COX-2 plays as a regulator of HIF-1alpha accumulation in DFX-treated colon cancer cells. Together, our findings suggest that iron metabolism may regulate stabilization of HIF-1alpha protein by modulating cyclooxygenase-2 signaling pathway.  相似文献   

5.
6.
7.
For many years, cyclooxygenase-2 (COX-2), a critical enzyme for PG production, has been the favorite target for anti-inflammatory drug development. However, recent revelations regarding the adverse effects of selective COX-2 inhibitors have stimulated intense debate. Interestingly, in the early phase of inflammation, COX-2 facilitates inflammatory PG production while in the late phase it has anti-inflammatory effects. Moreover, although some PGs are proinflammatory, others have anti-inflammatory effects. Thus, it is likely that PGs with opposing effects maintain homeostasis, although the molecular mechanism(s) remains unclear. We report here that an inflammatory PG, PGD2, via its receptor, mediates the activation of NF-kappaB stimulating COX-2 gene expression. Most interestingly, an anti-inflammatory PG (PGA1) suppresses NF-kappaB activation and inhibits COX-2 gene expression. We propose that while pro- and anti-inflammatory PGs counteract each other to maintain homeostasis, selective COX-2 inhibitors may disrupt this balance, thereby resulting in reported adverse effects.  相似文献   

8.
TSG-6 protein, up-regulated in inflammatory lesions and in the ovary during ovulation, shows anti-inflammatory activity and plays an essential role in female fertility. Studies in murine models of acute inflammation and experimental arthritis demonstrated that TSG-6 has a strong anti-inflammatory and chondroprotective effect. TSG-6 protein is composed of the N-terminal link module that binds hyaluronan and a C-terminal CUB domain, present in a variety of proteins. Interactions between the isolated link module and hyaluronan have been studied extensively, but little is known about the binding of full-length TSG-6 protein to hyaluronan and other glycosaminoglycans. We show that TSG-6 protein and hyaluronan, in a temperature-dependent fashion, form a stable complex that is resistant to dissociating agents. The formation of such stable complexes may underlie the activities of TSG-6 protein in inflammation and fertility, e.g. the TSG-6-dependent cross-linking of hyaluronan in the cumulus cell-oocyte complex during ovulation. Because adhesion to hyaluronan is involved in cell trafficking in inflammatory processes, we also studied the effect of TSG-6 on cell adhesion. TSG-6 binding to immobilized hyaluronan did not interfere with subsequent adhesion of lymphoid cells. In addition to immobilized hyaluronan, full-length TSG-6 also binds free hyaluronan and all chondroitin sulfate isoforms under physiological conditions. These interactions may contribute to the localization of TSG-6 in cartilage and to its chondroprotective and anti-inflammatory effects in models of arthritis.  相似文献   

9.
Two cytokine-inducible gene products, important in inflammation and infection, also play essential roles in female fertility. One of these is the product of tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6), alternatively termed TNFAIP6 (for TNF-alpha-induced protein 6), originally cloned from diploid human fibroblasts stimulated with TNF. The second is pentraxin 3 (PTX3), also termed TSG-14, originally isolated from TNF-stimulated human fibroblasts and from interleukin-1 (IL-1)-stimulated vascular endothelial cells. TSG-6, which specifically binds to hyaluronan (HA) and to inter-alpha-inhibitor (I alpha I), shows potent anti-inflammatory activity in acute and chronic inflammation, notably in several models of autoimmune arthritis. PTX3 was shown to play an important role in resistance to fungal infection with Aspergillus fumigatus. Both TSG-6 and PTX3 are synthesized in the ovary prior to ovulation, where they become components of an expanding viscoelastic matrix that surrounds the oocyte before its release from the follicle at the ovarian surface. Female mice with a targeted disruption of either the TSG-6 or PTX3 gene show severe defects in fertility.  相似文献   

10.
Induction of COX-2 expression by nitric oxide in rheumatoid synovial cells   总被引:4,自引:0,他引:4  
Prostaglandins formed by cyclooxygenase (COX) enzymes are important mediators of inflammation. The contribution of inducible COX-2 in the rheumatoid synovium is well documented. In this study, we evaluated the contribution of nitric oxide (NO) to COX-2 expression in rheumatoid synovial cells. Exposure of rheumatoid synovial cells to a NO donor, SNAP, induced COX-2 protein expression in a dose-dependent manner. RT-PCR analysis also demonstrated that COX-2 mRNA was induced in SNAP-treated synovial cells. Dexamethasone at therapeutic concentrations markedly inhibited this NO-mediated COX-2 expression in synovial cells. In contrast to its effect on COX-2 expression, SNAP did not affect the constitutive expression of COX-1 in rheumatoid synovial cells. Our findings suggest that NO is an important modulator of COX-2 expression and that glucocorticoids exert their anti-inflammatory action in rheumatoid synovium, at least in part, by suppression of COX-2 induction.  相似文献   

11.
12.
Peripheral inflammation involves an increase in cyclooxygenase-2 (COX-2)-mediated prostaglandin (PG) synthesis in the central nervous system (CNS), which contributes to allodynia and hyperalgesia. In the present study we have determined the changes in prostanoid tissue levels and in expression of terminal prostanoid synthases in both the CNS and inflamed peripheral tissue during carrageenan-induced paw inflammation in the rat. Prostanoid levels were measured by liquid chromatography-mass spectrometry and enzyme expression at the RNA level by quantitative PCR analysis during both the early (1-6 h) and late (12 and 24 h) phases of the inflammatory response. In the paw, the early phase was associated with increases in PGE(2) and thromboxane (TX)B(2) levels and with a peak of COX-2 expression that preceded that of microsomal prostaglandin-E(2) synthase-1 (mPGES-1). COX-2 and mPGES-1 remained elevated during the late phase, and PGE(2) continued to further increase through 24 h. The cytosolic PGE(2) synthase (cPGES) showed a small transient increase during the early phase, whereas mPGES-2 expression was not affected by inflammation. In the cerebrospinal fluid, elevated levels of PGE(2), 6-keto-PGF(1alpha), PGD(2), and TXB(2) were detected during the early phase. PGE(2) levels also increased in the spinal cord and, to a lesser extent, in the brain and remained elevated in both the cerebrospinal fluid and the spinal cord during the late phase. The expression of mPGES-1 was strongly up-regulated in the brain and spinal cord during inflammation, whereas no change was detected for the expression of cPGES, mPGES-2, COX-1, and terminal PGD, TX, or PGI synthases. The results show that the carrageenan-induced edema in the paw elicits an early phase of COX-2 induction in the CNS leading to an increase synthesis in PGD(2), 6-keto-PGF(1alpha), and TXB(2) in addition to the major PGE(2) response. The data also indicate that the up-regulation of mPGES-1 contributes to COX-2-mediated PGE(2) production in the CNS during peripheral inflammation.  相似文献   

13.
14.
Ultraviolet B (UVB) irradiation induces skin damage and inflammation. One way to reduce the inflammation is via the use of molecules termed photochemopreventive agents. Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SF), which is found in cruciferous vegetables, is known for its potent physiological properties. This study was designed to evaluate the effect of SF on skin inflammation in vitro and in vivo. In in vitro study using immortalized human keratinocytes (HaCaT), UVB caused marked inflammatory responses [i.e., decrease of HaCaT viability and increase of production of an inflammatory marker interleukin-6 (IL-6)]. SF recovered the cell proliferation and suppressed the IL-6 production. These anti-inflammatory effects of SF were explained by its ability to reduce UVB-induced inflammatory gene expressions [IL-6, IL-1β and cyclooxgenase-2 (COX-2)]. Because SF seems to have an impact on COX-2 expression, we focused on COX-2 and found that SF reduced UVB-induced COX-2 protein expression. In support of this, PGE2 released from HaCaT was suppressed by SF. Western blot analysis revealed that SF inhibited p38, ERK and SAPK/JNK activation, indicating that the inhibition of mitogen-activated protein kinases (MAPK) by SF would attenuate the expression of inflammatory mediators (e.g., COX-2), thereby reducing inflammatory responses. Moreover, we conducted skin thickening assay using HR-1 hairless mice and found that UVB-induced skin thickness, COX-2 protein expression and hyperplasia were all suppressed by feeding SF to the mice. These results suggest that SF has a potential use as a compound for protection against UVB-induced skin inflammation.  相似文献   

15.
Tumor necrosis factor-stimulated gene-6 (TSG-6) encodes a 35-kDa protein, which is comprised of contiguous Link and CUB modules. TSG-6 protein has been detected in the articular joints of osteoarthritis (OA) patients, with little or no constitutive expression in normal adult tissues. It interacts with components of cartilage matrix (e.g. hyaluronan and aggrecan) and thus may be involved in extracellular remodeling during joint disease. In addition, TSG-6 has been found to have anti-inflammatory properties in models of acute and chronic inflammation. Here we have mapped the human TSG-6 gene to 2q23.3, a region of chromosome 2 linked with OA. A single nucleotide polymorphism was identified that involves a non-synonymous G --> A transition at nucleotide 431 of the TSG-6 coding sequence, resulting in an Arg to Gln alteration in the CUB module (at residue 144 in the preprotein). Molecular modeling of the CUB domain indicated that this amino acid change might lead to functional differences. Typing of 400 OA cases and 400 controls revealed that the A(431) variant identified here is the major TSG-6 allele in Caucasians (with over 75% being A(431) homozygotes) but that this polymorphism is not a marker for OA susceptibility in the patients we have studied. Expression of the Arg(144) and Gln(144) allotypes in Drosophila Schneider 2 cells, and functional characterization, showed that there were no significant differences in the ability of these full-length proteins to bind hyaluronan or form a stable complex with inter-alpha-inhibitor.  相似文献   

16.
NO produced by the inducible NO synthase (NOS2) and prostanoids generated by the cyclooxygenase (COX) isoforms and terminal prostanoid synthases are major components of the host innate immune and inflammatory response. Evidence exists that pharmacological manipulation of one pathway could result in cross-modulation of the other, but the sense, amplitude, and relevance of these interactions are controversial, especially in vivo. Administration of 6 mg/kg LPS to rats i.p. resulted 6 h later in induction of NOS2 and the membrane-associated PGE synthase (mPGES) expression, and decreased constitutive COX (COX-1) expression. Low level inducible COX (COX-2) mRNA with absent COX-2 protein expression was observed. The NOS2 inhibitor aminoguanidine (50 and 100 mg/kg i.p.) dose dependently decreased both NO and prostanoid production. The LPS-induced increase in PGE(2) concentration was mediated by NOS2-derived NO-dependent activation of COX-1 pathway and by induction of mPGES. Despite absent COX-2 protein, SC-236, a putative COX-2-specific inhibitor, decreased mPGES RNA expression and PGE(2) concentration. Ketoprofen, a nonspecific COX inhibitor, and SC-236 had no effect on the NOS2 pathway. Our results suggest that in a model of systemic inflammation characterized by the absence of COX-2 protein expression, NOS2-derived NO activates COX-1 pathway, and inhibitors of COX isoforms have no effect on NOS2 or NOS3 (endothelial NOS) pathways. These results could explain, at least in part, the deleterious effects of NOS2 inhibitors in some experimental and clinical settings, and could imply that there is a major conceptual limitation to the use of NOS2 inhibitors during systemic inflammation.  相似文献   

17.
Polyunsaturated fatty acids (PUFA) n-3 inhibit inflammation, in vivo and in vitro in keratinocytes. We examined in HaCaT keratinocyte cell line whether eicosapentaenoic acid (EPA) a n-3 PUFA, gamma-linoleic acid (GLA) a n-6 PUFA, and arachidic acid a saturated fatty acid, modulate expression of cyclooxygenase-2 (COX-2), an enzyme pivotal to skin inflammation and reparation. We demonstrate that only treatment of HaCaT with GLA and EPA or a PPARgamma ligand (roziglitazone), induced COX-2 expression (protein and mRNA). Moreover stimulation of COX-2 promoter activity was increased by those PUFAs or rosiglitazone. The inhibitory effects of GW9662 and T0070907 (PPARgamma antagonists), on COX-2 expression and on stimulation of COX-2 promoter activity by EPA and GLA suggest that PPARgamma is implicated in COX-2 induction. Finally, PLA2 inhibitor methyl arachidonyl fluorophosphonate blocked the PUFA effects on COX-2 induction, promoter activity and arachidonic acid mobilization suggesting involvement of AA metabolites in PPAR activation. These findings demonstrate that n-3 and n-6 PUFA increased PPARgamma activity is necessary for the COX-2 induction in HaCaT human keratinocyte cells. Given the anti-inflammatory properties of EPA, we suggest that induction of COX-2 in keratinocytes may be important in the anti-inflammatory and protective mechanism of action of PUFAs n-3 or n-6.  相似文献   

18.
19.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of arthritis and pain. However, their long-term use is limited by gastrointestinal (GI) side effects such as gastric ulcers. NSAIDs act by inhibiting an enzyme called cyclooxygenase. Cyclooxygenase (COX) catalyses the generation of prostaglandins from arachidonic acid. Two isoforms of the enzyme exist--COX-1 and COX-2--both of which are targets for NSAIDs. Although they are associated with GI toxicity, NSAIDs have important antithrombotic and anti-inflammatory effects. The GI injury has been attributed to COX-1 inhibition and the anti-inflammatory effects to COX-2 inhibition. As COX-2 is traditionally viewed as an inducible enzyme, selective inhibition of COX-2 by 'coxibs' (selective COX-2 inhibitors) has been employed to achieve anti-inflammatory and analgesic effects without GI side effects. However, recently there have been suggestions that chronic administration of coxibs might increase the risk of cardiovascular events, such as atherosclerosis, compared with traditional NSAIDs. In vascular disease, there is increased expression of both COX-1 and COX-2, resulting in enhanced prostaglandin generation. The specific role of COX-1 and COX-2 in vascular regulation is still unknown but such knowledge is essential for the effective use of coxibs. Although more evidence is pointing to selective COX-1 inhibition as a therapeutic measure in inflammatory atherosclerosis, there are some studies that suggest that inhibition of COX-2 might have a potential benefit on atherosclerosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号