首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Plants have evolved different but interconnected strategies to defend themselves against herbivorous insects and microbial pathogens. We used an Arabidopsis/Pseudomonas syringae pathosystem to investigate the impact of pathogen-induced defense responses on cabbage looper (Trichoplusia ni) larval feeding. Arabidopsis mutants [npr1, pad4, eds5, and sid2(eds16)] or transgenic plants (nahG) that are more susceptible to microbial pathogens and are compromised in salicylic acid (SA)-dependent defense responses exhibited reduced levels of feeding by T. ni compared with wild-type plants. Consistent with these results, Arabidopsis mutants that are more resistant to microbial pathogens and have elevated levels of SA (cpr1 and cpr6) exhibited enhanced levels of T. ni feeding. These experiments suggested an inverse relationship between an active SA defense pathway and insect feeding. In contrast to these results, there was increased resistance to T. ni in wild-type Arabidopsis ecotype Columbia plants that were infected with P. syringae pv. maculicola strain ES4326 (Psm ES4326) expressing the avirulence genes avrRpt2 or avrB, which elicit a hypersensitive response, high levels of SA accumulation, and systemic acquired resistance to bacterial infection. Similar results were obtained with other ecotypes, including Landsberg erecta, Cape Verdi Islands, and Shakdara. When infected with Psm ES4326(avrRpt2) or Psm ES4326(avrB), nahG transgenic and npr1 mutant plants (which are more susceptible to virulent and avirulent P. syringae strains) failed to show the increased insect resistance exhibited by wild-type plants. It was surprising that wild-type plants, as well as nahG and npr1 plants, infected with Psm ES4326 not expressing avrRpt2 or avrB, which elicits disease, became more susceptible to T. ni. Our results suggest two potentially novel systemic signaling pathways: a systemic response elicited by HR that leads to enhanced T. ni resistance and overrides the SA-mediated increase in T. ni susceptibility, and a SA-independent systemic response induced by virulent pathogens that leads to enhanced susceptibility to T. ni.  相似文献   

2.
Arabidopsis accessions were screened with isolates of Phytophthora porri originally isolated from other crucifer species. The described Arabidopsis-Phytophthora pathosystem shows the characteristics of a facultative biotrophic interaction similar to that seen in agronomically important diseases caused by Phytophthora species. In susceptible accessions, extensive colonization of the host tissue occurred and sexual and asexual spores were formed. In incompatible combinations, the plants reacted with a hypersensitive response (HR) and the formation of papillae at the sites of attempted penetration. Defence pathway mutants such as jar1 (jasmonic acid-insensitive), etr1 (ethylene receptor mutant) and ein2 (ethylene-insensitive) remained resistant towards P. porri. However, pad2, a mutant with reduced production of the phytoalexin camalexin, was hyper-susceptible. The accumulation of salicylic acid (SA) and PR1 protein was strongly reduced in pad2. Surprisingly, this lack of SA accumulation does not appear to be the cause of the hyper-susceptibility because interference with SA signalling in nahG plants or sid2 or npr1 mutants had only a minor effect on resistance. In addition, the functional SA analogue benzothiadiazol (BTH) did not induce resistance in susceptible plants including pad2. Similarly, the complete blockage of camalexin biosynthesis in pad3 did not cause susceptibility. Resistance of Arabidopsis against P. porri appears to depend on unknown defence mechanisms that are under the control of PAD2.  相似文献   

3.
Although ethylene regulates a wide range of defense-related genes, its role in plant defense varies greatly among different plant-microbe interactions. We compared ethylene's role in plant response to virulent and avirulent strains of Xanthomonas campestris pv. vesicatoria in tomato (Lycopersicon esculentum Mill.). The ethylene-insensitive Never ripe (Nr) mutant displays increased tolerance to the virulent strain, while maintaining resistance to the avirulent strain. Expression of the ethylene receptor genes NR and LeETR4 was induced by infection with both virulent and avirulent strains; however, the induction of LeETR4 expression by the avirulent strain was blocked in the Nr mutant. To determine whether ethylene receptor levels affect symptom development, transgenic plants overexpressing a wild-type NR cDNA were infected with virulent X. campestris pv. vesicatoria. Like the Nr mutant, the NR overexpressors displayed greatly reduced necrosis in response to this pathogen. NR overexpression also reduced ethylene sensitivity in seedlings and mature plants, indicating that, like LeETR4, this receptor is a negative regulator of ethylene response. Therefore, pathogen-induced increases in ethylene receptors may limit the spread of necrosis by reducing ethylene sensitivity.  相似文献   

4.
Tomato leaves or cotyledons expressing the Cf-2 or Cf-9 Cladosporium fulvum resistance genes induce salicylic acid (SA) synthesis following infiltration with intercellular washing fluid (IF) containing the fungal peptide elicitors Avr2 and Avr9. We investigated whether SA was required for Cf gene-dependent resistance. Tomato plants expressing the bacterial gene nahG, encoding salicylate hydroxylase, did not accumulate SA in response to IF infiltration but remained fully resistant to C. fulvum. NahG Cf0 plants were as susceptible to C. fulvum as wild-type Cf0. Neither free nor conjugated salicylic acid accumulated in IF-infiltrated Cf2 and Cf9 NahG leaves and cotyledons but conjugated catechol did accumulate. The Cf-9-dependent necrotic response to IF was prevented in NahG plants and replaced by a chlorotic Cf-2-like response. SA also potentiated Cf-9-mediated necrosis in IF-infiltrated wild-type leaves. In contrast, the Cf-2-dependent IF response was retained in NahG leaves and chlorosis was more pronounced than in the wild-type. The distribution of cell death between different cell types was altered in both Cf2 and Cf9 NahG leaves after IF injection. IF-induced accumulation of three SA-inducible defence-related genes was delayed and reduced but not abolished in NahG Cf2 and Cf9 leaves and cotyledons. NahG Tm-22 tomato showed increased hypersensitive response (HR) lesion size upon TMV infection, as observed in TMV-inoculated N gene-containing NahG tobacco plants.  相似文献   

5.
Signaling cross-talk between wound- and pathogen-response pathways influences resistance of plants to insects and disease. To elucidate potential interactions between salicylic acid (SA) and jasmonic acid (JA) defense pathways, we exploited the availability of characterized mutants of Arabidopsis thaliana (L.) Heynh. and monitored resistance to Egyptian cotton worm (Spodoptera littoralis Boisd.; Lepidoptera: Noctuidae). This generalist herbivore is sensitive to induced plant defense pathways and is thus a useful model for a mechanistic analysis of insect resistance. As expected, treatment of wild-type Arabidopsis with JA enhanced resistance to Egyptian cotton worm. Conversely, the coil mutant, with a deficiency in the JA response pathway, was more susceptible to Egyptian cotton worm than wild-type Arabidopsis. By contrast, the nprl mutant, with defects in systemic disease resistance, exhibited enhanced resistance to Egyptian cotton worm. Pretreatment with SA significantly reduced this enhanced resistance of nprl plants but had no influence on the resistance of wild-type plants. However, exogenous SA reduced the amount of JA that Egyptian cotton worm induced in both npr1 mutant and wild-type plants. Thus, this generalist herbivore engages two different induced defense pathways that interact to mediate resistance in Arabidopsis.  相似文献   

6.
Milling A  Babujee L  Allen C 《PloS one》2011,6(1):e15853
Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET) and salicylic acid (SA) defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(-) mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(-) mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(-) mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.  相似文献   

7.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

8.
Greenberg JT  Silverman FP  Liang H 《Genetics》2000,156(1):341-350
Salicylic acid (SA) is required for resistance to many diseases in higher plants. SA-dependent cell death and defense-related responses have been correlated with disease resistance. The accelerated cell death 5 mutant of Arabidopsis provides additional genetic evidence that SA regulates cell death and defense-related responses. However, in acd5, these events are uncoupled from disease resistance. acd5 plants are more susceptible to Pseudomonas syringae early in development and show spontaneous SA accumulation, cell death, and defense-related markers later in development. In acd5 plants, cell death and defense-related responses are SA dependent but they do not confer disease resistance. Double mutants with acd5 and nonexpressor of PR1, in which SA signaling is partially blocked, show greatly attenuated cell death, indicating a role for NPR1 in controlling cell death. The hormone ethylene potentiates the effects of SA and is important for disease symptom development in Arabidopsis. Double mutants of acd5 and ethylene insensitive 2, in which ethylene signaling is blocked, show decreased cell death, supporting a role for ethylene in cell death control. We propose that acd5 plants mimic P. syringae-infected wild-type plants and that both SA and ethylene are normally involved in regulating cell death during some susceptible pathogen infections.  相似文献   

9.
During plant–pathogen interactions, the plant cell wall forms part of active defence against invaders. In recent years, cell wall-editing enzymes, associated with growth and development, have been related to plant susceptibility or resistance. Our previous work identified a role for several tomato and Arabidopsis endo-1,4-β-glucanases (EGs) in plant–pathogen interactions. Here we studied the response of the Arabidopsis thaliana T-DNA insertion mutant lacking EG Korrigan1 (KOR1) infected with Pseudomonas syringae. KOR1 is predicted to be an EG which is thought to participate in cellulose biosynthesis. We found that kor1-1 plants were more susceptible to P. syringae, and displayed severe disease symptoms and enhanced bacterial growth if compared to Wassilewskija (Ws) wild-type plants. Hormonal and gene expression analyses revealed that the jasmonic acid (JA) pathway was activated more in kor1-1 plants with an increase in the JA-biosynthesis gene LOX3 and a greater accumulation of JA. Upon infection the accumulation of JA and JA-isoleucine (JA-Ile) was higher than in wild-type plants and increased the induction of LOX3 and the JA-responsive PDF1.2 gene. In addition, the increase of salicylic acid (SA) in healthy and infected kor1-1 may reflect the complex interaction between JA and SA, which results in the more susceptible phenotype displayed by the infected mutant plants. Callose deposition was enhanced in infected kor1-1 and an increase in pathogen-induced hydrogen peroxide took place. The susceptible phenotype displayed by KOR1-deficient plants was coronatine-independent. No significant changes were detected in the hormonal profile of the kor1-1 plants infected by coronatine-deficient P. syringae cmaA, which supports that absence of EG KOR1 alters per se the plant response to infection. We previously reported increased resistance of kor1-1 to B. cinerea, hence, the lack of this EG alters cell wall properties and plant responses in such a way that benefits P. syringae colonisation but restricts B. cinerea invasion.  相似文献   

10.
Although defense responses mediated by the plant oxylipin jasmonic acid (JA) are often necessary for resistance against pathogens with necrotrophic lifestyles, in this report we demonstrate that jasmonate signaling mediated through COI1 in Arabidopsis thaliana is responsible for susceptibility to wilt disease caused by the root-infecting fungal pathogen Fusarium oxysporum . Despite compromised JA-dependent defense responses, the JA perception mutant coronatine insensitive 1 ( coi1 ), but not JA biosynthesis mutants, exhibited a high level of resistance to wilt disease caused by F. oxysporum . This response was independent from salicylic acid-dependent defenses, as coi1/NahG plants showed similar disease resistance to coi1 plants. Inoculation of reciprocal grafts made between coi1 and wild-type plants revealed that coi1 -mediated resistance occurred primarily through the coi1 rootstock tissues. Furthermore, microscopy and quantification of fungal DNA during infection indicated that coi1 -mediated resistance was not associated with reduced fungal penetration and colonization until a late stage of infection, when leaf necrosis was highly developed in wild-type plants. In contrast to wild-type leaves, coi1 leaves showed no necrosis following the application of F. oxysporum culture filtrate, and showed reduced expression of senescence-associated genes during disease development, suggesting that coi1 resistance is most likely achieved through the inhibition of F. oxysporum -incited lesion development and plant senescence. Together, our results indicate that F. oxysporum hijacks non-defensive aspects of the JA-signaling pathway to cause wilt-disease symptoms that lead to plant death in Arabidopsis.  相似文献   

11.
Ethylene and salicylic acid (SA) are key intermediates in a host's response to pathogens. Previously, we have shown using a tomato compatible interaction that ethylene and SA act sequentially and are essential for disease symptom production. Here, we have examined the relationship between the two signals in the Arabidopsis-Xanthomonas campestris pv. campestris (Xcc) compatible interaction. Preventing SA accumulation by expression of the nahG gene reduced subsequent ethylene production and altered the development of disease symptoms, with plants showing no visible chlorosis. The ethylene insensitive lines, etr1-1 and etr2-1, on the other hand, accumulated SA and exhibited normal but precocious symptom development. Therefore, Arabidopsis, like tomato, was found to exhibit co-operative ethylene and SA action for the production of disease symptoms. However, in Arabidopsis, SA was found to act upstream of ethylene. Jasmonic acid and indole-3-acetic acid levels were also found to increase in response to Xcc. In contrast to ethylene, accumulation of these hormones was not found to be dependent on SA action. These results indicate that the plants response to a virulent pathogen is a composite of multiple signaling pathways.  相似文献   

12.
Transgenic ethylene-insensitive tobacco (Tetr) plants spontaneously develop symptoms of wilting and stem necrosis when grown in nonautoclaved soil. Fusarium oxysporum, F. solani, Thielaviopsis basicola, Rhizopus stolonifer, and two Pythium spp. were isolated from these diseased Tetr plants and demonstrated to be causal agents of the disease symptoms. Pathogenicity of the two Pythium isolates and four additional Pythium spp. was tested on ethylene-insensitive tobacco and Arabidopsis seedlings. In both plant species, ethylene insensitivity enhanced susceptibility to the Pythium spp., as evidenced by both a higher disease index and a higher percentage of diseased plants. Based on the use of a DNA probe specific for Pythium spp., Tetr plants exhibited more pathogen growth in stem and leaf tissue than similarly diseased control plants. These results demonstrate that ethylene signaling is required for resistance to different root pathogens and contributes to limiting growth and systemic spread of the pathogen.  相似文献   

13.
The wheat rhizosphere-inhabiting nonpathogenic Fusarium sambucinum isolate FS-94 protected tomato from Fusarium wilt (F. oxysporum f. sp. lycopersici) in laboratory experiments. Seed soaking or immersion of seedling roots in a FS-94 spore suspension prior to inoculation with the pathogen delayed the appearance of wilt symptoms and significantly reduced disease severity in plants of a susceptible tomato cultivar. Quantification of fungal ergosterol in infected tomato showed that protection against wilt agent was related to limitation of the pathogen growth in plants exposed to FS-94. Incubation of tomato seedlings in a FS-94 spore suspension for 48 or 72 h led to plant protection and increased the salicylic acid (SA) concentration in their roots, suggesting that this isolate was involved in a plant-mediated mode of action and induced resistance. Soaking tomato seeds in the spore suspension did not induce SA accumulation in seedling roots, but nevertheless resulted in a significant reduction in wilt severity when the seedlings were challenged with the pathogen. In response to pathogen attack, the SA content in susceptible seedlings grown from FS-94-treated seeds started to increase within 1 day and remained elevated for 72 h. This suggests that F. sambucinum isolate FS-94 primed a SA-dependent signaling system in tomato.  相似文献   

14.
C Nawrath  J P Mtraux 《The Plant cell》1999,11(8):1393-1404
In Arabidopsis, systemic acquired resistance against pathogens has been associated with the accumulation of salicylic acid (SA) and the expression of the pathogenesis-related proteins PR-1, PR-2, and PR-5. We report here the isolation of two nonallelic mutants impaired in the pathway leading to SA biosynthesis. These SA induction-deficient (sid) mutants do not accumulate SA after pathogen inoculation and are more susceptible to both virulent and avirulent forms of Pseudomonas syringae and Peronospora parasitica. However, sid mutants are not as susceptible to these pathogens as are transgenic plants expressing the nahG gene encoding an SA hydroxylase that degrades SA to catechol. In contrast to NahG plants, only the expression of PR-1 is strongly reduced in sid mutants, whereas PR-2 and PR-5 are still expressed after pathogen attack. Furthermore, the accumulation of the phytoalexin camalexin is normal. These results indicate that SA-independent compensation pathways that do not operate in NahG plants are active in sid mutants. One of the mutants is allelic to eds5 (for enhanced disease susceptibility), whereas the other mutant has not been described previously.  相似文献   

15.
16.
The Arabidopsis PAD4 gene was previously shown to be required for synthesis of camalexin in response to infection by the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 but not in response to challenge by the non-host fungal pathogen Cochliobolus carbonum. In this study, we show that pad4 mutants exhibit defects in defense responses, including camalexin synthesis and pathogenesis-related PR-1 gene expression, when infected by P. s. maculicola ES4 326. No such defects were observed in response to infection by an isogenic avirulent strain carrying the avirulence gene avrRpt2. In P. s. maculicola ES4 326-infected pad4 plants, synthesis of salicylic acid (SA) was found to be reduced and delayed when compared with SA synthesis in wild-type plants. Moreover, treatment of pad4 plants with SA partially reversed the camalexin deficiency and PR-1 gene expression phenotypes of P. s. maculicola ES4 326-infected pad4 plants. These findings support the hypothesis that PAD4 acts upstream from SA accumulation in regulating defense response expression in plants infected with P. s. maculicola ES4 326. A working model of the role of PAD4 in governing expression of defense responses is presented.  相似文献   

17.
Previous studies argue that salicylic acid (SA) plays an important role in the plant signal transduction pathway(s) leading to disease resistance. It has been proposed that one of its modes of action is inhibition of catalase and elevation of H2O2 level in the tissue. To verify the role of SA and H2O2 during pathogenesis, transgenic tobacco plants expressing Saccharomyces cerevisiae CTA1 gene coding for peroxisomal catalase were constructed. These plants possess 2-4-fold higher total catalase activity under normal growth conditions. No symptoms of chlorosis and/or necrosis were observed. Levels of pathogenesis-related proteins (PR) and their respective mRNAs were significantly reduced in the infected leaves of the transgenic plants. No change in PR expression was detected in uninfected leaves of both CTA1 and control plants challenged with TMV. These results suggest that elevation in catalase activity and resulting reduction of H2O2 level results in more severe local disease symptoms, apparently due to alteration of the hypersensitive response mechanism and does not influence systemic acquired resistance after viral infection. This research was supported by a grant from Komitet Badań Naukowych (project no. 6P20302006).  相似文献   

18.
Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive actinomycete, causing bacterial wilt and canker disease in tomato (Solanum lycopersicum). Host responses to gram-positive bacteria and molecular mechanisms associated with the development of disease symptoms caused by Cmm in tomato are largely unexplored. To investigate plant responses activated during this compatible interaction, we used microarray analysis to monitor changes in host gene expression during disease development. This analysis was performed at 4 d postinoculation, when bacteria were actively multiplying and no wilt symptoms were yet visible; and at 8 d postinoculation, when bacterial growth approached saturation and typical wilt symptoms were observed. Of the 9,254 tomato genes represented on the array, 122 were differentially expressed in Cmm-infected plants, compared with mock-inoculated plants. Functional classification of Cmm-responsive genes revealed that Cmm activated typical basal defense responses in the host, including induction of defense-related genes, production and scavenging of free oxygen radicals, enhanced protein turnover, and hormone synthesis. Cmm infection also induced a subset of host genes involved in ethylene biosynthesis and response. After inoculation with Cmm, Never ripe (Nr) mutant plants, impaired in ethylene perception, and transgenic plants with reduced ethylene synthesis showed significant delay in the appearance of wilt symptoms, compared with wild-type plants. The retarded wilting in Nr plants was a specific effect of ethylene insensitivity, and was not due to altered expression of defense-related genes, reduced bacterial populations, or decreased ethylene synthesis. Taken together, our results indicate that host-derived ethylene plays an important role in regulation of the tomato susceptible response to Cmm.  相似文献   

19.
Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles.  相似文献   

20.
Previous studies have shown that salicylic acid (SA) is an essential component of the plant resistance to pathogens. We now show that SA plays a role in the plant response to adverse environmental conditions, such as salt and osmotic stresses. We have studied the responses of wild-type Arabidopsis and an SA-deficient transgenic line expressing a salicylate hydroxylase (NahG) gene to different abiotic stress conditions. Wild-type plants germinated under moderate light conditions in media supplemented with 100 mM NaCl or 270 mM mannitol showed extensive necrosis in the shoot. In contrast, NahG plants germinated under the same conditions remained green and developed true leaves. The lack of necrosis observed in NahG seedlings under the same conditions suggests that SA potentiates the generation of reactive oxygen species in photosynthetic tissues during salt and osmotic stresses. This hypothesis is supported by the following observations. First, the herbicide methyl viologen, a generator of superoxide radical during photosynthesis, produced a necrotic phenotype only in wild-type plants. Second, the presence of reactive oxygen-scavenging compounds in the germination media reversed the wild-type necrotic phenotype seen under salt and osmotic stress. Third, a greater increase in the oxidized state of the glutathione pool under NaCl stress was observed in wild-type seedlings compared with NahG seedlings. Fourth, greater oxidative damage occurred in wild-type seedlings compared with NahG seedlings under NaCl stress as measured by lipid peroxidation. Our data support a model for SA potentiating the stress response of the germinating Arabidopsis seedling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号