首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The aims of this work were to discover the pathways of carbohydrate oxidation prior to and during thermogenesis by the club of the spadix of Arum maculatum, and whether there was coarse control of these pathways. 2. 14C02 production from [1-14C]-, [3,4-14C]-, and [6-14C]glucose, the detailed distribution of 14C from [1-14C]- and [6-14C]glucose, and the maximum catalytic activities of phosphofructokinase, fructose-1,6-diphosphate aldolase, glucose-6-phosphate dehydrogenase, and phosphogluconate dehydrogenase were determined at different stages in the development of the spadix. The results indicate that in the early stages carbohydrate is oxidized via both the pentose phosphate pathway and glycolysis, and that a shift to glycolysis occurs during development so that just before and during thermogenesis glycolysis predominates almost exclusively. 3. During development the activities of phosphofructokinase and glucose-6-phosphate dehydrogenase per club increased 100- ans during spadix development, and indicated that the onset of rapid glycolysis at thermogenesis is regulated by fine control or availability of substrate.  相似文献   

2.
A sharp and strong suppression of protein synthesis by cycloheximide in liver cells of starving rats is paralleled with activation of RNA synthesis and glucose-6-phosphate dehydrogenase production. Subsequent reconstitution and stimulation of protein synthesis (6-12 hrs after cycloheximide injection) result in activation of hexokinase. Upon stimulation of DNA synthesis (48-60 hrs after cycloheximide injection) the activity of both enzymes is very low. Since glucose-6-phosphate dehydrogenase appears to be the limiting step of glucose decay via the pentose phosphate pathway, and hexokinase is the limiting step of glycolysis, it was assumed that RNA synthesis predominantly occurs via the pentose phosphate pathway, while that of proteins via glycolysis.  相似文献   

3.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase. The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

4.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

5.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase.The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase and hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

6.
W. Jessup  M. W. Fowler 《Planta》1977,137(1):71-76
In sycamore cells grown on nitrate as opposed to glutamate there is a higher pentose phosphate pathway carbon flux relative to glycolysis in the early stages of cell growth when nitrate assimilation is most active. The high pentose phosphate pathway activity compared with glycolysis in nitrate grown cells is accompanied by enhanced levels of hexokinase, pyruvate kinase, glucose-6-phosphate de-hydrogenase, 6-phosphogluconate dehydrogenase and transketolase. There is no significant increase in activity of the solely glycolytic enzyme, phosphofructokinase. It is suggested that the increased pentose phosphate pathway activity in nitrate grown cells is correlated with a demand by nitrite assimilation for NADPH.II=Jessup and Fowler, 1976 b  相似文献   

7.
The Clarke-Carbon clone bank carrying ColE1-Escherichia coli DNA has been screened by conjugation for complementation of glycolysis and hexose monophosphate shunt mutations. Plasmids were identified for phosphofructokinase (pfkA), triose phosphate isomerase (tpi), phosphoglucose isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf), gluconate-6-phosphate dehydrogenase (gnd), enolase (eno), phosphoglycerate kinase (pgk), and fructose-1,6-P2 aldolase (fda). Enzyme levels for the plasmid-carried gene ranged, for the various plasmids, from 4- to 25-fold the normal level.  相似文献   

8.
Mark Stitt  Tom Ap Rees 《Phytochemistry》1979,18(12):1905-1911
The aim of this work was to measure the capacities of pea (Pisum sativum) shoot chloroplasts to catalyse the oxidative pentose phosphate pathway and glycolysis. Of the total activities in the unfractionated homogenates, appreciable proportions of those of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and phosphofructokinase, and smaller but significant proportions of those of phosphopyruvate hydratase and pyruvate kinase were recovered in crude preparations of chloroplasts, and co-purified with intact chloroplasts on sucrose gradients. The activities in the chloroplasts showed considerable latency that was closely correlated with chloroplast integrity. Phosphoglyceromutase activity in the above preparations of chloroplasts did not exceed that expected from cytoplasmic contamination. The mass-action ratio for phosphoglyceromutase in illuminated isolated chloroplasts differed markedly from the enzyme's equilibrium constant. Isolated chloroplasts converted 2-phosphoglycerate to pyruvate. The enzyme activities of the chloroplasts were compared with the rates of respiration and starch breakdown in pea leaves in the dark. It is concluded that in the dark chloroplasts could metabolize all the products of starch breakdown and catalyse much of the respiration of pea shoots via the oxidative pentose phosphate pathway and/or glycolysis as far as 3-phosphoglycerate. It is suggested that pea shoot chloroplasts lack phosphoglyceromutase but contain some phosphopyruvate hydratase and pyruvate kinase.  相似文献   

9.
10.
11.
12.
Habituated (H) nonorganogenic sugarbeet callus was found to exhibit a disturbed sugar metabolism. In contrast to cells from normal (N) callus, H cells accumulate glucose and fructose and show an abnormal high fructose/glucose ratio. Moreover, H cells which have decreased wall components, display lower glycolytic enzyme activities (hexose phosphate isomerase and phosphofructokinase) which is compensated by higher activities of the enzymes of the hexose monophosphate pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase). The disturbed sugar metabolism of the H callus is discussed in relation to a deficiency in H2O2 detoxifying systems.Abbreviations 6PG-DH 6-phosphogluconate dehydrogenase - G6P-DH glucose-6-phosphate dehydrogenase - H fully habituated callus - HK hexokinase - HMP hexoses monophosphate - HPI hexose phosphate isomerase - N normal callus - PFK phosphofructokinase  相似文献   

13.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

14.
Hexokinase, glucokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity was studied in the liver and musculus quadriceps femoris of 110-day foetuses 1, 2, 3, 30 and 60-day piglets and in adult pigs. The activity of all enzymes in the tissues of newborn piglets is considerably higher than in the tissues of foetuses. The activity of hexokinase in both tissues of piglets increases in the first days after birth and lowers by the one month age. The phosphofructokinase activity in the skeletal muscles and the glucokinase one in the pig liver increase during the postnatal development. The activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in both tissues of pigs increases after birth and then decreases. Glucose metabolism in the pig liver at all stages of odontogenesis proceeds more intensively by the pentose phosphate pathway, and in the skeletal muscles--by glycolytic one.  相似文献   

15.
Lafta AM  Fugate KK 《Phytochemistry》2011,72(6):476-489
Injury to plant products by harvest and postharvest operations induces respiration rate and increases the demand for respiratory substrates. Alterations in primary carbon metabolism are likely to support the elevated demand for respiratory substrates, although the nature of these alterations is unknown. To gain insight into the metabolic changes that occur to provide substrates for wound-induced increases in respiration, changes in the concentrations of compounds that are substrates, intermediates or cofactors in the respiratory pathway were determined in sugarbeet (Beta vulgaris L.) roots in the 4 days following injury. Both wounded and unwounded tissues of wounded roots were analyzed to provide information about localized and systemic changes that occur after wounding. In wounded tissue, respiration increased an average of 186%, fructose, glucose 6-phosphate, ADP and UDP concentrations increased, and fructose 1,6-bisphosphate, triose phosphate, citrate, isocitrate, succinate, ATP, UTP and NAD+ concentrations decreased. In the non-wounded tissue of wounded roots, respiration rate increased an average of 21%, glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate and ADP concentrations increased, and isocitrate, UTP, NAD+, NADP+, and NADPH concentrations declined. Changes in respiration rate and metabolite concentrations indicated that localized and systemic changes in primary carbon metabolism occurred in response to injury. In wounded tissue, metabolite concentration changes suggested that activities of the early glycolytic enzymes, fructokinase, phosphofructokinase, phosphoglucose isomerase, and phosphoglucomutase were limiting carbon flow through glycolysis. These restrictions in the respiratory pathway, however, were likely overcome by use of metabolic bypasses that allowed carbon compounds to enter the pathway at glycolytic and tricarboxylic acid (TCA) cycle downstream locations. In non-wounded tissue of wounded roots, metabolic concentration changes suggested that glycolysis and the TCA cycle were generally capable of supporting the small systemic elevation in respiration rate. Although the mechanism by which respiration is regulated in wounded sugarbeet roots is unknown, localized and systemic elevations in respiration were positively associated with one or more indicators of cellular redox status.  相似文献   

16.
The correlation between the rates of protein and nucleic acid synthesis and the activity of the key enzymes of glycolysis (hexokinase, phosphofructokinase) and pentose phosphate cycle (glucose-6-phosphate dehydrogenase) in the mitotic cycle of human diploid fibroblasts synchronized by double thymidine block was studied. It was found that the removal of the thymidine block is followed by short-term (presumably, non-specific) simultaneous stimulation of matrix syntheses, as well as by glycolytic and pentose phosphate cycle enzyme syntheses. By the beginning of the S-phase, all the processes appear to be inhibited, followed by gradual activation of glycolysis and pentose phosphate cycle reactions. The implementation of the cell cycle is concomitant with stepwise transitions of protein and hexokinase synthesis rates and ATP content to one of the following levels--basal, intermediate or maximal. Changes in the activity of glucose-6-phosphate dehydrogenase in the course of the cell cycle appear as oscillations, those in phosphofructokinase as alternative states. At stage M, the oscillatory processes are temporarily quenched, whereas the ATP content occupies an intermediate level. In contrast with diploid fibroblasts, in transformed T9 cells the enzyme activity is much higher, and the fluctuations in activity throughout the cell cycle are less noticeable. Presumably, in transformed cells the enzyme activity is at the maximum level and is not prone to effector regulation.  相似文献   

17.
Parsley cell cultures produce linear furanocoumarins and the linear benzodipyrandione, graveolone, in response to treatment with an elicitor from either Phytophthora megasperma or Alternaria carthami. Activities of enzymes involved in general phenylpropanoid metabolism, phenylalanine ammonia-lyase and 4-coumarate: CoA ligase, as well as of an enzyme involved specifically in furanocoumarin biosynthesis, dimethylallyl diphosphate: umbelliferone dimethylallyltransferase, were monitored over several days after treatment with A. carthami elicitor. In addition, the activities of chalcone synthase, an enzyme involved in flavonoid formation, and of glucose-6-phosphate: NADP 1-oxidoreductase were also monitored. The lyase and the ligase activities increased steadily for 48 h and the dimethylallyltransferase activity for 54 h, while the synthase activity was not altered and the oxidoreductase activity decreased gradually. In some experiments, phenylalanine ammonia-lyase activity reached a maximum value of 250 mukat/kg, twice the maximal activity observed previously in parsley cells after treatment with either ultraviolet light or an elicitor preparation from P. megasperma. In crude extracts, phenylalanine ammonia-lyase activity was shown to be inhibited by unidentified small-molecular-weight compounds which were formed in proportion to the elicitor treatment. While phenylalanine ammonia-lyase and dimethylallyl diphosphate: umbelliferone dimethylallyltransferase are known to be required for furanocoumarin biosynthesis, the involvement of 4-coumarate: CoA ligase is as yet unclear. The concomitant increase and decrease of the ligase activity with the activities of the lyase and the dimethylallyltransferase, as well as its similar response to elicitor concentrations, suggest that CoA esters of cinnamic acids play a role in the biosynthesis of furanocoumarins.  相似文献   

18.
19.
NADPH-dependent reactions play important roles in production of industrially valuable compounds. In this study, we used phosphofructokinase (PFK)-deficient strains to direct fructose-6-phosphate to be oxidized through the pentose phosphate pathway (PPP) to increase NADPH generation. pfkA or pfkB single deletion and double-deletion strains were tested for their ability to produce lycopene. Since lycopene biosynthesis requires many NADPH, levels of lycopene were compared in a set of isogenic strains, with the pfkA single deletion strain showing the highest lycopene yield. Using another NADPH-requiring process, a one-step reduction reaction of 2-chloroacrylate to 2-chloropropionic acid by 2-haloacrylate reductase, the pfkA pfkB double-deletion strain showed the highest yield of 2-chloropropionic acid product. The combined effect of glucose-6-phosphate dehydrogenase overexpression or lactate dehydrogenase deletion with PFK deficiency on NADPH bioavailability was also studied. The results indicated that the flux distribution of fructose-6-phosphate between glycolysis and the pentose phosphate pathway determines the amount of NAPDH available for reductive biosynthesis.  相似文献   

20.
J. N. Pierre  O. Queiroz 《Planta》1979,144(2):143-151
Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase — 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.Abbreviations CAM crassulacean acid metabolism - F-6-P fructose-6-phosphate - F-bi-P fructose-1,6 biphosphate - G-3-PDH 3-phosphoglyceraldehyde dehydrogenase (NAD), EC 1.2.1.12 - G-6-P glucose-6-phosphate - GSH reduced glutathion - GDH glycerolphosphate dehydrogenase, EC 1.1.1.8 - PEP phosphoenol pyruvate - PEPC PEP carboxylase, EC 4.1.1.31 - PFK phosphofructokinase, EC 2.7.1.11 - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PGM phosphoglycerate phosphomutase, EC 5.4.2.1 - T.P. triose phosphates - TPI triose phosphate isomerase, EC 5.3.1.1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号