首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Steiner C  Keil TA 《Tissue & cell》1995,27(3):275-288
The imaginal antenna of the male silkmoth Antheraea polyphemus is a feather-shaped structure consisting of about 30 flagellomeres, each of which gives off two pairs of side branches. During the pupal stage (lasting for 3 weeks), the antenna develops from a leaf-shaped, flattened epidermal sac ('antennal blade') via two series of incisions which proceed from the periphery towards the prospective antennal stem. The development of the peripheral nervous system was studied by staining the neurons with an antibody against horseradish peroxidase as well as by electron microscopy. The epithelium is subdivided in segmentally arranged sensillogenic regions alternating with non-sensillogenic regions. Immediately after apolysis, clusters consisting of 5 sensory neurons each and belonging to the prospective sensilla chaetica can be localized at the periphery of the antennal blade in the sensillogenic regions. During the first day following apolysis, the primordia of ca. 70 000 olfactory sensilla arise in the sensillogenic regions. Axons from their neurons are collected in segmentally arranged nerves which run towards the CNS along the dorsal as well as the ventral epidermis and are enveloped by a glial sheath. This 'primary innervation pattern' is completed within the second day after apolysis. A first wave of incisions ('primary incisions') subdivide the antennal blade into segmental 'double branches' without disturbing the innervation pattern. Then a second wave of incisions ('secondary incisions') splits the double branches into single antennal branches. During this process, the segmental nerves and their glial sheaths are disintegrated. The axons are then redistributed into single branch nerves while their glial sheath is reconstituted, forming the 'secondary', or adult, innervation pattern. The epidermis is backed by a basal lamina which is degraded after outgrowth of the axons, but is reconstituted after formation of the single antennal branches.  相似文献   

2.
Keil TA  Steiner C 《Tissue & cell》1990,22(3):319-336
The antenna of the male silkmoth Antheraea polyphemus is a featherlike structure consisting of a central stem and ca. 120 side branches, which altogether carry about 70,000 olfactory sensilla. We investigate the development during the pupal phase. At the end of diapause, the antennal rudiment consists of a leaf-shaped, one-layered epidermal sac. It is supplied with oxygen via a central main trachea, which gives off numerous thin side branches. These are segmentally arranged into bundles which run to the periphery of the antennal blade. When the epidermis retracts from the pupal cuticle (apolysis; stage 1), it consists of cells which are morphologically uniform. The epidermal cells form a network of long, irregular basal protrusions (epidermal feet), which crisscross the antennal lumen. During the first day post-apolysis (stage 2), the antennal epidermis differentiates into alternating thick 'sensillogenic' and thin 'non-sensillogenic' areas arranged in stripes which run in parallel to the tracheal bundles. Numerous dark, elongated cells, which might be the sensillar stem cells, are scattered in the sensillogenic epithelium. A number of very early sensilla has been found at the distal edges of the sensillogenic stripes in positions which later will be occupied by sensilla chaetica. The whole antennal blade is enveloped by the transparent ecdysial membrane, consisting of the innermost layers of the pupal cuticle which are detached during apolysis.  相似文献   

3.
Steiner C  Keil TA 《Tissue & cell》1995,27(3):289-297
In the male silkmoth Antheraea polyphemus, the formation of the side branches of the quadripectinate antennal flagellum was disturbed by an experimental manipulation. Normally the side branches develop in the pupa via deep incisions which proceed from the periphery towards the centerline of the leaf-shaped antennal anlage. Local removal of the uppermost, pigmented cuticular layers of the pupal antennal pocket ('cuticular window') led to a local standstill of branch formation in the manipulated region of the pocket, most probably caused by increased evaporation of water through the remaining layers of meso- and endocuticle. These parts of the antenna retained an unbranched, plate-like shape. This early morphogenetic stage was conserved by the secretion of antennal cuticle. Besides cuticle formation, development of sensilla is not impeded by the manipulation. In the plate-shaped regions, the initial pattern formed by the sensilla in the antennal epidermis is preserved, because they maturate at their birthplaces. In the individual segments, the pattern of sensilla shows a mirror-like symmetry with respect to the segmental midline. From the edge to the midline, we found large s. trichodea, followed by small s. trichodea, s. basiconica, and s. coeloconica on the dorsal side whereas on the ventral side, there are only large s. trichodea and s. campaniformia. We conclude that the development of the featherlike antennal shape on the one hand and the development of sensilla and cuticle on the other hand are independent processes.  相似文献   

4.
Many moths use sex pheromones to find their mates in the dark. Their antennae are well developed with lateral branches to receive the pheromone efficiently. However, how these structures have evolved remains elusive, because the mechanism of development of these antennae has not been studied at a molecular level. To elucidate the developmental mechanism of this type of antenna, we observed morphogenesis, cell proliferation, cell death and antennal patterning gene expression in the branched antenna of the silk moth, Bombyx mori. Region-specific cell proliferation and almost ubiquitous apoptosis occur during early pupal stages and appear to shape the lateral branch cooperatively. Antennal patterning genes are expressed in a pattern largely conserved among insects with branchless antennae until the late 5th larval instar but most of them change their expression dramatically to a pattern prefiguring the lateral branch during metamorphosis. These findings imply that although antennal primordium is patterned by conserved mechanisms before metamorphosis, most of the antennal patterning genes are reused to form the lateral branch during metamorphosis. We propose that the acquisition of a new regulatory circuit of antennal patterning genes may have been an important event during evolution of the sensory antenna with lateral branches in the Lepidoptera.  相似文献   

5.
The larval antenna of Bombyx mori has 13 sensilla and about 52 sensory neurons in its distal portion. The axons form two nerve cords which unite in the cranial hemocoel to supply the brain as the olfactory nerve. The antennal imaginal disc, which is a thick pseudostratified epithelium continuous with the antennal epidermis, thickens markedly during the 5th instar by rapid cell proliferation. At the prepupal stage cell proliferation ceases and the disc everts to form a large pupal antenna. Simultaneously, an extensive cell rearrangement occurs in the antennal epidermis and the disc tissue becomes much thinner because of the abrupt expansion of antennal surface area. The two larval nerve cords thin down markedly by degeneration of axons, but they do not disintegrate totally even after the onset of pupation. The epidermis of the larval antenna forms the distal portion of the pupal antenna, while the imaginal disc forms the more basal portion. Development to the adult antenna occurs almost immediately after the onset of pupation; many adult neurons appear in the simple epidermis facing toward the thick outer side of the newly formed pupal cuticle. By 12 hours after the onset of pupation, these neurons align themselves in many transverse rows which are the first sign of the adult antennal configuration. Addition of these neuronal axons to the once-thinned nerve cords causes resumed thickening of the cords during the first 24 hours and thereafter. Differentiation of adult sensilla begins in the next 24 hours and is almost completed at the third day of pupation, which requires a total of 10 days.  相似文献   

6.
Okada J  Kanamaru Y  Toh Y 《Zoological science》2002,19(11):1201-1210
The voluntary movement of antennae of blinded cockroaches was examined in the tethered-walking condition. An object of metal plate was presented to a tip of a single antenna in order to induce tactile orientation behavior. Horizontal movements of the antenna before and during the object presentation were analyzed both before and after ablation of a mechanosensory organ, the scapal hair plate (S-HP), at the base of antenna. The resting antennal position shifted outwardly by about 20 degrees after the S-HP ablation. Spontaneous antennal movements in ablated animals became stiff and wider ranged. The tactile object was set at two different horizontal positions, 45 degrees and 90 degrees clockwise to the head, for the right side antenna. The number of contacts in a constant test period was significantly decreased in the tests at 45 degrees after ablation. Trajectories of antennal movements before and after contacts were categorized into four patterns. In the case that an antenna made contact with the object during its abduction (outward) movement, it then passed the object outwardly or withdrew inwardly. These were termed "outward-pass (O-P)" and "outward-withdrawal (O-W)" patterns, respectively. Similarly, contacts during the adduction (inward) movement were divided into "inward-pass (I-P)" or "inward-withdrawal (I-W)" pattern. Significant effects of the S-HP ablation appeared in the tests at 90 degrees : the I-P pattern mostly disappeared and was replaced by the I-W pattern. The results strongly suggest that the S-HP has crucial roles for controlling both spontaneous and stimulated movements of the cockroach antenna.  相似文献   

7.
8.
The establishment of the sensory nervous system of the antenna of the grasshopper Schistocerca gregaria was examined using immunocytochemical methods and in the light of the appendicular and articulated nature of this structure. The former is demonstrated first by the expression pattern of the segment polarity gene engrailed in the head neuromere innervating the antenna, the deutocerebrum. Engrailed expression is present in identified deutocerebral neuroblasts and, as elsewhere in the body, is continuous with cells of the posterior epithelium of the associated appendage, in this case the antenna. Second, early expression of the glial homeobox gene reversed polarity (repo) in the antenna is by a stereotypic pair of cells at the antenna base, a pattern we show is repeated metamerically for each thoracic appendage of the embryo. Subsequently, three regions of Repo expression (A1, A2, A3) are seen within the antenna, and may represent a preliminary form of articulation. Bromodeoxyuridine incorporation reveals that these regions are sites of intense cell differentiation. Neuron-specific horseradish peroxidase and Lazarillo expression confirm that the pioneers of the ventral and dorsal tracts of the antennal sensory nervous system are amongst these differentiating cells. Sets of pioneers appear simultaneously in several bands and project confluent axons towards the antennal base. We conclude that the sensory nervous system of the antenna is not pioneered from the tip of the antenna alone, but in a stepwise manner by cells from several zones. The early sensory nervous systems of antenna, maxilla and leg therefore follow a similar developmental program consistent with their serially homologous nature.  相似文献   

9.
Summary The authors have studied the occurrence of PAS positive substances during the differentiation of the vaginal epithelium in fetuses and neonatal mice. The material consists of normal mice, mice that have received estradiol injections for the first five days after birth, and mice that have received both estradiol and colchicine injections. The cranial 3/5 of the mouse vaginal epithelium is formed from the pseudostratified columnar müllerian epithelium. This undergoes a differentiation and divides into two zones: a superficial zone and a basal zone. The latter arises from cells migrating basally from the superficial zone. Later the two zones merge and the typical prepuberal vaginal epithelium arises. The results of this investigation point to the cell divisions in the superficial zone being of particular importance for the cell differentiation, even though other possibilities cannot be excluded. The effect of estradiol administration on the epithelium in the vaginal anlage is discussed. The circumstance that estradiol may change the determination of the cells is pointed out.This investigation has been supported by a grant from Maggie Stephens' Stiftelse.  相似文献   

10.
The morphology of the antennal hair-sensilla of Periplaneta americana, their distribution and frequency on the antennal flagellum have been examined by transmission- and scanning-electron microscopy. The types of sensilla were distinguished with respect to physiologically relevant criteria such as wall structure and number of sensory cells. Among the sensilla of the antenna of the adult male, long, single-walled sensilla with four sensory cells (types sw B), Probably responsible for reception of sexual pheromones, are most frequent, representing about 54% of the antennal sensilla. About half of these sensilla are newly-formed at the imaginal ecdysis; the other half are derived from the shorter type sw B sensilla of the nymphal antenna. Short type sw B sensilla are present in all larval stages of both sexes and in adult females as well. During the imaginal ecdysis of males, however, the length of these sensilla increases to double that found in nymphs. Dendritic branches also increase in number. During postembryonic development, the number of sensory fibers in the antennal flagellum increases nearly 20-fold, from 14,000 in the first larval instar to about 270,000 in the adult male. The greatest increase, approximately 90%, occurs during the last developmental stage.  相似文献   

11.
In the Chinese hamster, 17 days, i.e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermatogonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. The following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i.e. newborn stem cells that still have to migrate away, mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

12.
Antennae of the moth, Manduca sexta, are thickly populated with sensory neurons, which send axons through antennal nerves to the brain. These neurons arise by cell divisions and differentiate synchronously during the 18 days of metamorphosis from pupa to adult. Biochemical studies support the hypothesis that antennal neurons use acetylcholine (ACh) as a neurotransmitter: (1) Antennae incubated with [14C]choline synthesize and store [14C]ACh; several other transmitter candidates do not accumulate detectably when appropriate radioactive precursors are supplied; (2) antennae and antennal nerves contain endogenous ACh; and (3) extracts of mature antennae contain choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) with properties similar to those reported for the enzymes from other arthropods. Levels of ACh, ChAc, and AChE begin to increase in antennae soon after the sensory neurons are “born.” Levels rise exponentially for over a week as the neurons differentiate and then reach a plateau, at about the time the neurons reach morphological maturity, that is maintained into adulthood. In contrast, levels of carnitine acetyltransferase, cholinesterase, and soluble protein, presumably not confined to nervous tissue, change little during metamorphosis. Levels of ACh, ChAc, and AChE rise in an intracranial segment of antennal nerve at about the same time as in the antenna, indicating that axons can transport neurotransmitter machinery at an early stage in their development.  相似文献   

13.
The antennal circulatory organ of Periplaneta americana and Blaberus craniifer was investigated by light and electron microscopy. This organ consists of two pulsatile ampullae located near the antennal base which are interconnected by a large transverse muscle and associated blood vessels which run into the antennae. Diastole is caused simultaneously in both ampullae by the transverse muscle. Systole is produced passively by the elasticity of the wall of the ampullae and minute accessory tendons. Both elastic structures contain fine unbanded extracellular filaments. The antennal vessels possess two distinct regions: a proximal convoluted region lying within the hemocoel of the head and a narrower distal region running through the antenna and opening near the antennal apex. The length of the proximal portion increases markedly during ontogeny in correlation with the growing antenna. Its wall consists of a high-prismatic epithelium ensheathed by a thick layer of collagen fibrils. The structure of the wall cells is comparable to that found in some salt transporting epithelia: it shows a polar organization with basal infoldings, a large number of mitochondria, and typical arrangement of the junctions or mitochondrial-scalariform junctional complexes. The possible physiological function of this epithelium in ionic or osmoregulation of the hemolymph entering the antenna is discussed. The wall of the distal vessel region consists of a flat single-layered epithelium and seems to be specialized only for delivery of hemolymph to antennae. The structure and function of the antennal heart in cockroaches is compared to that found in other insects.  相似文献   

14.
The effects of the widely used neurotoxic pyrethroid insecticides on neuronal development or plasticity are unclear. To expand knowledge about the influence of the pyrethroid fenvalerate on neuronal development, metamorphic remodelling of the primary olfactory neuropil of the beetle Tenebrio molitor has been studied. The antennal lobe is subdivided into distinct glomeruli before metamorphosis. This is in contrast to that which occurs in other well-studied holometabolous insects such as the moth Manduca sexta and the honeybee. As an indicator of antennal lobe interneurons, locusta-tachykinin immunoreactive neurons have been used. They project into the antennal lobes and form tufted arbors in larval and adult stages within glomeruli throughout the neuropil. These glomerular structures are invaded by glomerular sensory afferent axons and are surrounded by processes of glia cells. With pupation, the glomerulization is lost and no locusta-tachykinin or substance P immunoreactivity is visible in the antennal lobe. The immunoreactivity reappears during metamorphosis, starting with diffusely branched arbors that later become tufted. Application of the neurotoxic insecticide fenvalerate at pupation in sublethal concentrations resulted in a loss or reduction of glomerular pattern formation by neurons and glia cells during metamorphosis. Labelling of antennal sensory axons revealed that the olfactory neuropil was not deafferented, and also that the sensory axons were not organized into a normal glomerular pattern. In addition to the morphological differences, fenvalerate treatment caused locusta-tachykinin immunoreactivity to reappear prematurely during metamorphosis. Possible reasons for fenvalerate-induced alterations in antennal lobe development and their implications for normal development are discussed.  相似文献   

15.
Baldwin KM  Hakim RS 《Tissue & cell》1991,23(3):411-422
The number of epithelial cells comprising larval midgut of the tobacco hornworm moth, Manduca sexta increases 200-fold in development from the first to the fifth instar. We have examined larvae periodically before and during molting to follow epithelial cell proliferation and differentiation. The midgut epithelium in Manduca sexta consists predominantly of columnar and goblet cells. These are arranged in a characteristic pattern with each goblet cell surrounded by a single layer of 4-6 columnar cells (Hakim et al., (1988)). While undifferentiated basal stem cells are infrequently seen in intermolt larvae, just prior to the period when external signs of molting are visible, their number increases and mitotic figures become common. Proliferation continues for several hours and then these stem cells differentiate following a pattern similar to that seen during embryogenesis (Hakim et al., (1988)). Here, however, the newly differentiating cells become intercalated among the mature differentiated cells already present in the epithelium. Since the pattern of individual goblet cells surrounded by a reticulum of columnar cells is maintained after the addition of new cells, the midgut epithelium of molting larvae appears to be a useful model for studying pattern formation in development.  相似文献   

16.
Video recordings and single frame analysis were used to study the function of the second antennae of crayfish (Cherax destructor) as a sensory system in freely behaving animals. Walking crayfish move their antennae back and forth through horizontal angles of 100 degrees and more, relative to the body long axis. At rest, animals tend to hold their antennae at angular positions between 20 and 50 degrees. Movements of the two antennae are largely independent of each other. Before and during a turn of the body the ipsilateral antenna is moved into the direction of the turn. Solid objects are explored by repeatedly moving the antennae towards and across them. Both seeing and blinded crayfish can locate stationary objects following antennal contact. On antennal contact with a small novel object, a moving animal withdraws its antenna and attacks the object. When the antenna of a blinded crayfish is lightly touched with a brush the animal turns and attacks the point of stimulation. The direction taken and the distance covered during an attack can be correlated with: the angle at which the antenna is held at the moment of contact and the distance along the antennal flagellum at which the stimulus is applied. From behavioural evidence we conclude that crayfish use information about the angular position of their antennae and about the position of stimulated mechanoreceptors along the antennal flagellum to locate objects in their environment. We suggest ways in which an active tactile system-like the crayfish's antennae--could supply animals with information about the three-dimensional layout of their environment.  相似文献   

17.
The influence of olfactory receptor cell (ORC) axons from transsexually grafted antennae on the development of glomeruli in the antennal lobes (ALs), the primary olfactory centers, was studied in the moth Manduca sexta. Normally during metamorphic adult development, the pheromone-specific macroglomerular complex (MGC) forms only in the ALs of males, whereas two lateral female-specific glomeruli (LFGs) develop exclusively in females. A female AL innervated by ORC axons from a grafted male antenna developed an MGC with three glomeruli, like the MGC of a normal male AL. Conversely, a male AL innervated by ORC axons from a grafted female antenna lacked the MGC but exhibited LFGs. ORC axons from grafted male antenna terminated in the MGC-specific target area, even in cases when the antennal nerve (AN) entered the AL via an abnormal route. Within ectopic neuromas formed by ANs that had become misrouted and failed to enter the brain, male-specific axons were not organized and formed terminal branches in many areas. The results suggest the presence of guidance cues within the AL for male-specific ORC axons. Depending on the sex of the antennal innervation, glial borders formed in a pattern characteristic of the MGC or LFGs. The sex-specific number of projection neurons (PNs) in the medial group of AL neurons remained unaffected by the antennal graft, but significant changes occurred in the organization of PN arborizations. In gynandromorphic females, LFG-specific PNs extended processes into the induced MGC, whereas in gynandromorphic males, PNs became restricted to the LFGs. The results indicate that male-and female-specific ORC axons play important roles in determining the position, anatomical features, and innervation of sexually dimorphic glomeruli.  相似文献   

18.
ABSTRACT In the Chinese hamster, 17 days, i. e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermato-gonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. the following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i. e. newborn stem cells that still have to migrate away. mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

19.
20.
Summary By combined enzymatic and mechanical treatment, it was possible to dissociate the sensory epithelium of developing antennae of male Antheraea polyphemus and A. pernyi silkmoths from the stage of separation of the antennal branches up to the early stages of cuticle deposition. Large numbers of entire developing trichoid sensilla were isolated. These are characterized by a large trichogen cell with a long apical, hair-forming process and a large nucleus. A cluster of 2–3 sensory neurons, enclosed by the thecogen cell, is situated in the basal region. The dendrites run past the nucleus of the trichogen cell into the apical process from which they protrude laterally. The nuclei of the tormogen and a 4th enveloping cell can be distinguished near the base of the prospective hair. After further dissociation, only the neuron clusters remain, still enclosed by their thecogen cell and often attached to the antennal branch nerve via their axons. It is finally possible to disrupt the thecogen cells and the axons, leaving the sensory neurons with inner dendritic segments and axon stumps. The majority of these neurons can be expected to be olfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号