首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organization of Krebs tricarboxylic acid cycle enzymes   总被引:1,自引:0,他引:1  
Binding of enzymes of the Krebs TCA cycle to biological membranes was characterized with respect to intracellular location, susceptibility to various chemical and physical treatments, and extractability as a macromolecular component of the mitochondrial inner membrane. It was shown that citrate synthase and malate dehydrogenase bind to the inner membrane in an ionic strength-sensitive, saturable, and specific manner to a relatively thermostabile component manifested on the inner (matrix) surface of the inner membrane of the mitochondrion. From these data several arguments in support of the physiological applicability of these processes were deduced, and the question of whether these two enzymes bind to the same or different membrane components was considered. Also, experiments preliminary to purification of the citrate synthase binding component were presented.  相似文献   

2.
Further characterization of the Krebs tricarboxylic acid cycle metabolon   总被引:1,自引:0,他引:1  
A preparation of gently disrupted rat liver mitochondria which shows exposed and easily sedimented Krebs tricarboxylic acid cycle enzyme activities has been characterized further. The exposed malate dehydrogenase is inhibited by high molecular weight blue dextran which indicates the availability of the enzyme to the bulk solvent. Further, mitoplasts are not permeable to citrate synthase antibodies ruling out the possibility of vesicularization of high molecular weight substances. The slightly disrupted mitochondria sedimented more slowly than did intact mitochondria on a Ficoll gradient. Electron microscopy, both thin section and scanning, showed slightly swollen mitochondria with some disruption of the membranes. Labeling with ferritin-labeled second antibody to citrate synthase antibodies showed again the accessibility of these disrupted mitochondria to the antibody. When either the oxidation of fumarate or the malate dehydrogenase-citrate synthase coupled system are studied, relative kinetic advantages are observed of the gently disrupted systems over the completely solubilized system. These kinetic advantages are more labile to disruption than is the binding of the enzymes to the particle. These results indicate that the Krebs tricarboxylic acid cycle exists as a sequential complex of enzymes, a metabolon, in situ. This study shows that previous studies which showed interactions between sequential enzymes of this pathway and their binding to the inner surface of the inner membrane actually reflected an in vivo organization of this pathway.  相似文献   

3.
4.
Supramolecular organization of tricarboxylic acid cycle enzymes   总被引:1,自引:0,他引:1  
We propose a spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon). The structure is based on an analysis of data on the interaction between tricarboxylic acid cycle enzymes and the mitochondrial inner membrane, as well as on data on enzyme-enzyme interactions. The alpha-ketoglutarate dehydrogenase complex, adsorbed along one of the 3-fold symmetry axes of the mitochondrial inner membrane, plays a key role in formation of the metabolon. In the interaction with the membrane, two association sites of the alpha-ketoglutarate dehydrogenase complex participate, placed on opposite sides of the complex. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleoside-diphosphate kinase. Succinate dehydrogenase, which is the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of the metabolon on the membrane. The molecular mass of the complex (without regard to succinate dehydrogenase) is 8 x 10(6) Da. The metabolon symmetry corresponds to the D3 point symmetry group.  相似文献   

5.
In virtue of analysis of data on the interaction of tricarboxylic acid cycle enzymes with the mitochondrial inner membrane and data on the enzyme-enzyme interactions, the spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon) is proposed. The alpha-ketoglutarate dehydrogenase complex, adsorbed on the mitochondrial inner membrane along one of its 3-fold symmetry axes, plays the key role in the formation of metabolon. Two association sites of the alpha-ketoglutarate dehydrogenase complex located on opposite sides of the complex participate in the interaction with the membrane. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleosidediphosphate kinase. Succinate dehydrogenase, the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of metabolon on the membrane. The molecular mass of the complex (ignoring succinate dehydrogenase) is of 8.10(6) daltons. The metabolon symmetry corresponds to the D3 point symmetry group. It is supposed, that the tricarboxylic acid cycle enzyme complex interacts with other multienzyme complexes of the matrix and the electron transfer chain.  相似文献   

6.
7.
8.
The thermostability of four enzymes of the tricarboxylic acid cycle has been studied in the facultative thermophile,Bacillus coagulans. Although isocitrate dehydrogenase appeared to be more temperature-sensitive in whole-cell extracts of cultures grown at 30°C compared with that in cultures grown at 55°C, this difference could be largely eliminated by the removal of cell-wall material. The specific activity of each of the enzymes examined was approximately threefold higher in cultures grown at 55°C than in those grown at 30°C. The maximum temperature, Arrhenius plot and effect of stabilizing agents for each enzyme were examined and found to be independent of growth temperature. Sodium chloride (10% w/v) was an effective protective agent for fumarase, aconitase and malate dehydrogenase. Protection from thermal denaturation of isocitrate dehydrogenase, aconitase and fumarase but not malate dehydrogenase was also given when the enzymes were heated in the presence of their substrates. These results are discussed in light of the generalized theories of facultative thermophily which have been proposed.  相似文献   

9.
10.
11.
M N Kondrashova 《Biofizika》1989,34(3):450-458
Taking into account structural and functional organization of mitochondrial processes it has been shown that at active work there functions in mitochondria an accelerated mechanism of succinic acid formation via coupling of glutamate-oxalacetate transaminase and alpha-ketoglutaratdehydrogenase. This way is closed up into a cycle with the participation of cytosol transaminases which support influx of glutamate, pyruvate and malic acid into mitochondria. When provision of the mitochondria with the substrate proceeds along the transaminase pathway the initial slow region of the tricarboxylic acid cycle is omitted. Thus at active work a faster course is selected. It permits realization of the advantages of succinate dehydrogenase high activity and of oxidation efficiency of succinic acid generated in mitochondria which is essentially higher than that under oxidation of succinic acid and even more of other substrates of the tricarboxylic acid cycle.  相似文献   

12.
13.
14.
Summary Skeletal muscle mitochondrial forms of the tricarboxylic acid cycle enzymes were examined for genetic variance. The methods used revealed no genetic variants.  相似文献   

15.
The intracellular distribution of enzymes of the TCA cycle was investigated in liver of rainbow trout. All enzymes of the cycle apart from succinyl thiokinase were detected. Citrate synthase, alpha-ketoglutarate dehydrogenase and succinate dehydrogenase were wholly mitochondrial. Fumarase, malate dehydrogenase, aconitase and NADP-isocitrate dehydrogenase were detected in both cytosol and mitochondria.  相似文献   

16.
17.
It has been shown in the experiments on rat liver mitochondria under glucose hexo-kinase load that excess of substrates of (1-20 mM) pyruvate, acetate, propionate, pent-4-enoate and malate may induce oxidation of NAD(P)H and inhibition of mitochondrial respiration (by 20-50% and more) due to a decreased rate of hydrogen production by tricarboxylic acid cycle. It has been concluded from the analysis of mathematical models and metabolite-testings which remove this inhibition that for pyruvate and acetate this inhibition is an autocatalytic one. It is related to a decreased level of CoA and oxaloacetate due to the formation of "traps" such as acetyl-CoA and alpha-kotoglutarate. For propionate and pent-4-enoate in the bicarbonate-free medium suppression of the flux in the cycle is concerned with a decreased level of CoA, acetyl-CoA and succionoyl CoA due to the accumulation of propionyl-CoA. It seems to be also concerned with the inhibition of citrate-synthetase and alpha-ketoglutarate-dehydrogenase by propionyl-CoA. Malate (in the presence of malonate) can inhibit respiration at the expense of direct inhibition of citrate-synthetase.  相似文献   

18.
19.
Plant mitochondria survive separation on sucrose gradients and subsequent dilution to iso-osmolar conditions. Oxalacetate penetrates these remarkably uniform and intact preparations, and inhibits all Krebs cycle oxidations. With the exception of succinate these inhibitions are caused by oxidation of a common pool of NADH, reduced by dehydrogenases, during conversion of added oxalacetate to malate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号