首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific 135-kDa protein was purified from porcine cauda epididymal fluid. Analysis of its N-terminal amino acid sequence revealed it to be a new protein. Stable clones of hybridomas that produced monoclonal antibodies against the purified 135-kDa protein were established. A clone, B-11, reacting both with epididymal fluid and with sperm plasma membranes was selected and used in this study. Immunoblotting analysis showed that B-11 reacted only with a 135-kDa protein among epididymal fluid proteins. In contrast, B-11 did not recognize a similar 135-kDa sperm protein but did strongly react with a 27-kDa protein among sperm membrane proteins, extracted by NP-40 in the presence of protease inhibitors. B-11 also reacted only with a 27-kDa protein fragment among trypsin digests of the 135-kDa epididymal protein. The 135-kDa protein was first detected, by ELISA or immunoblotting analysis, at the beginning of the corpus epididymis. Maximal levels were reached in the distal corpus and levels were slightly decreased in the cauda epididymis. On the other hand, the surface of caput sperm were found to contain small amounts of antigen(s), the concentration of which gradually increased during epididymal transit. In immunocytochemical studies, the antigen was detectable in the epithelial cells from the initial segment to the corpus of the epididymis but not in the caudal cells. In the lumen, the presence of the 135 kDa protein was apparent in the corpus (at a maximum in the middle and distal corpus) and to a lesser degree in the caudal lumen. The 27-kDa protein was distributed all over the equatorial region of the acrosome of less than 10% of caput epididymal sperm. As sperm passed through the corpus epididymis, the percentage of immunoreactive cells increased and the protein was restricted to specific domains of the sperm head. Thus, on the mature sperm, antigen was localized in a crescent-shaped area of the equatorial segment just behind the anterior part of the acrosome and on the apical rim of the sperm head. This is the first observation of a sperm surface antigen derived from an epididymal protein as a proteolytic fragment that interacts with specific regions of the sperm membrane during the process of spermatozoa maturation.  相似文献   

2.
小鼠附睾头精子获得与卵子质膜融合能力的物质基础研究   总被引:1,自引:0,他引:1  
随着精子在附睾中的转运,它们与卵子质膜的融合能力逐渐增加。怩证明2附睾体和附睾尾的精子均具有相当高的膜融合能力,而附睾头中的精了奶少能与卵子质膜融合,这是还说明附睾头中的精子不具备与云透明带卵子融合的物质条件呢?利用附睾结扎留并延长体外获能时间,可使附睾头远端精子的融合能力明显地提高;在精子培养液中加入ATP,并延长精卵共培养时间,也可使一少部分附睾头近端的精子获得与卵子质膜融合的能力。这表明附睾  相似文献   

3.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

4.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Maturation of spermatozoa in the epididymis of the Chinese hamster   总被引:4,自引:0,他引:4  
Chinese hamster spermatozoa gain their ability to move when they descend from the testis to the distal part of the caput epididymis, but it is not until they enter the corpus epididymis that they become capable of fertilizing eggs. The maturation of the spermatozoa proceeds as they further descend the tract and perhaps continues even in the vas deferens. During transit between the distal caput and proximal cauda epididymides, small membrane-limited vesicles (and tubules) appear on the plasma membrane over the acrosomes of the spermatozoa. The number of vesicles appearing on the sperm brane reaches a maximum when the spermatozoa are in the proximal cauda epididymis. It declines sharply in the distal cauda epididymis. Spermatozoa in the vas deferens are free of the vesicles. The origin, chemical nature, and functional role of the vesicles that appear on the sperm surface during epididymal transit must be the subject of further investigation.  相似文献   

6.
7.
We report here recent findings on the sperm maturation antigen SMA4, which is secreted by holocrine cells of the distal caput epididymis and binds to the flagellar surface of mouse sperm during epididymal transit. Washed sperm from the caput and corpus epididymides of mice were examined by immunofluorescence and SDS-PAGE using wheat germ agglutinin, which binds specifically to SMA4 as a primary probe. Results indicate that sperm first exhibit WGA reactivity on their flagellae in the region of the distal caput, and that the appearance of WGA receptors is due to the binding of a 54-Kd glycoprotein (SMA4) to the cell surface. Extracts of epididymis containing SMA4 were tested for their ability to bind to the surfaces of caput and corpus sperm. Caput sperm surfaces bound SMA4 in a temperature-independent manner, and binding occurred in the presence of enzyme inhibitors, suggesting a nonenzymatic process. Biochemical studies revealed that SMA4 contains disulfide bonds which stabilize it on the sperm surface and restrict its mobility. Terminal carbohydrate residues of the molecule are sialic acids. The addition of SMA4 to caput sperm flagellae prevented tail-to-tail agglutination, normally seen when caput sperm are diluted into saline; and SMA4 was able to disperse clumps of agglutinated caput sperm. The data suggest that a primary function of SMA4 is to prevent tail-to-tail agglutination of sperm during storage in the epididymis.  相似文献   

8.
The effects of dilauroylphosphatidylcholine (PC12) on ram epididymal sperm motility, acrosome reaction (AR) induction, plasma membrane permeability, mitochondrial function, and sperm penetration into zona-free hamster eggs were determined. PC12 (50 microM) induced cell motility in caput and cauda sperm, as measured by subjective estimation and automated motility analysis. Motion parameters of treated caput sperm approached those of control ejaculated sperm. Flow cytometric analysis revealed that membrane permeability to propidium iodide and mitochondrial uptake of rhodamine 123 changed during epididymal transit. PC12 induced the AR in sperm from all epididymal regions relative to control incubated sperm (caput 17% vs. control 8%; corpus 29% vs. control 13%; proximal cauda 48% vs. control 4%; distal cauda 51% vs. control 9%). After PC12 treatment, egg penetration by sperm was increased for sperm from the corpus (corpus 7% vs. control 0%) and cauda (proximal 48% vs. control 0%; distal 51% vs. control 0%), but not for caput sperm (caput 0% vs. control 0%). These studies establish that some sperm in each region of the epididymis possess the capacity for movement and the AR. Caput sperm, however, were unique in that they could not penetrate eggs. Additional maturational changes must occur in the caput and/or corpus epididymidis before penetration capacity can be expressed.  相似文献   

9.
Mammalian spermatozoa that have not completed final testicular sperm maturation have residual cytoplasm and increased creatine phosphokinase (CK) content. This study determined: (1) if CK could be detected by immunostaining cat spermatozoa from the caput, corpus, and cauda epididymis, (2) fluctuations in the proportions of spermatozoa with mature or immature CK-staining patterns during epididymal sperm transit, and (3) how well sperm maturity (as determined by a CK marker) correlated with testicular or epididymal dysfunctions associated with morphological sperm abnormalities. One epididymis was collected from each of 37 cats after orchiectomy and processed immediately to allow sperm morphology evaluations on a 'regional' basis. Sperm released from the contralateral epididymis were evaluated for motility, sperm membrane integrity, and immunostaining with CK-B antibodies. Proportions of spermatozoa with malformed or detached heads, proximal droplets and acrosomal or midpiece abnormalities decreased (P < 0.05) from the caput to the cauda epididymis. In contrast, proportions of spermatozoa that were motile, membrane-intact or with flagellar abnormalities or distal droplets increased (P < 0.05) from the caput to cauda region. Percentages of spermatozoa with an immature CK-staining pattern also decreased (P < 0.05) with epididymal transit (which differs from that reported for the human and stallion). There was no correlation (P > 0.05) between sperm morphology and the CK-staining patterns. In summary, the results reveal that some specific sperm malformations in the domestic cat are of testicular origin, whereas others develop during epididymal transit.  相似文献   

10.
Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking.  相似文献   

11.
We found an intra-acrosomal antigen of about 155,000 daltons (155 kDa) in a survey using the monoclonal antibody MC101 raised against mouse cauda epididymal spermatozoa. Morphological studies by means of indirect immunofluorescence and immunogold electron microscopy localized the antigen to the cortex region of the anterior acrosome. Avidin biotin complex immunocytochemistry initially demonstrated a faint signal at the anterior acrosome in the testis spermatozoa that increased in intensity as the sperm moved toward the distal epididymis. This incremental immunoreactivity was also confirmed by immunoblotting following one-dimensional SDS-PAGE. The 155 kDa protein band was immunostained, and it was much more intense in the cauda epididymal than in the caput and corpus epididymal spermatozoa. Only a trace or no immunostain was evident in the caput or testis spermatozoa. The antigen localization did not change during passage through the epididymis, being confined at the cortex region of the anterior acrosome. The epididymal epithelial cells were not immunostained. These findings suggested that the 155 kDa protein is biochemically modified, further implying that the biochemical alteration of intra-acrosomal material is involved in sperm maturation in the epididymis. © 1995 wiley-Liss, Inc.  相似文献   

12.
小鼠附睾头精子,其头部Ca~(2 )在顶体前区顶体外膜内侧结合最多,Ca~(2 )沉淀反应颗粒于该处呈连续层状。附睾头豚鼠精子其头部结合Ca~(2 )含量很少,且主要结合于顶体前区腹面顶体外膜内侧。小鼠附睾体和附睾尾精子Ca~(2 )的分布特征基本上和附睾头精子相同。但豚鼠附睾尾精子顶体外膜内侧无Ca~(2 )结合。和附睾头、附睾尾的附睾液相比,附睾体附睾液基质内具有大量Ca~(2 )存在。附睾体柱状上皮细胞的微绒毛切面上也具有Ca~(2 )沉淀反应颗粒,微绒毛可能与附睾液Ca~(2 )含量的调节有关。精子尾部Ca~(2 )主要分布于线粒体内,在质膜内、外两侧和线粒体外膜外侧也结合有少量的Ca~(2 )。和小鼠精子相比,豚鼠精子尾部线粒体内具有大量的Ca~(2 )。  相似文献   

13.
Ram spermatozoa were obtained from different regions (caput, corpus, and cauda) of the epididymis and their plasma membrane was removed using a nitrogen cavitation treatment (750 psi, 10 min equilibration at 4 degrees C). Membrane was recovered after sucrose gradient centrifugation and identified using 125I-succinylated concanavalin A (125I-succConA) as a surface marker. Based on fluorescein isothiocyanate-succConA (FITC-succConA) labeling and electron microscopy, cavitation removed plasma membrane from the anterior sperm head in the area overlying the acrosome. Cholesterol was the major sterol in plasma membrane, with desmosterol present in sperm entering the epididymis (caput sperm) but negligible in sperm after epididymal transit (cauda sperm). Ethanolamine and choline phosphoglycerides represented 70-80% of membrane phospholipids, with the ethanolamine fraction decreasing relative to choline phosphoglycerides during epididymal transit. The molar ratio of cholesterol to phospholipid increased in the plasma membrane during maturation. The bulk phospholipid-bound fatty acids consisted primarily of palmitoyl acyl groups (16:0) in caput sperm and docosahexaenoyl acyl groups (22:6) in cauda sperm. The choline phosphoglyceride fraction was purified and analyzed. It consisted of a mixture of ether acyl glycero-3-phosphocholine and diacyl phosphoglyceride, with the dominant acyl residue, at all stages of epididymal maturation, being 22:6 throughout epididymal transit. The significance of these findings relative to acquisition of fertilization capacity by sperm during epididymal maturation is discussed.  相似文献   

14.
Highly purified plasma membranes, isolated by an aqueous two-phase polymer method from goat epididymal spermatozoa, were found to possess a kinase activity that causes phosphorylation of serine and threonine residues of several endogenous plasma membrane proteins. Cyclic AMP, cyclic GMP, Ca(2+)-calmodulin, phosphatidylserine-diolein, polyamines and heparin had no appreciable effect on this kinase. Autoradiographic analysis showed that the profile of the phosphorylation of membrane proteins by this endogenous cAMP-independent protein kinase underwent marked modulation during the transit of spermatozoa through the epididymis. In caput sperm plasma membrane, 18, 21, 43, 52, 74 and 90 kDa proteins were phosphorylated, whereas, in the corpus and cauda epididymal spermatozoa, a differential phosphorylation pattern was observed with respect to the 90, 74, 21 and 18 kDa proteins. The rate of phosphorylation of the 74 kDa protein decreased markedly during the early phase of sperm maturation (caput to distal corpus epididymides) whereas there was little change in kinase activity in sperm plasma membrane. In contrast, the rates of phosphorylation of the 18 and 21 kDa proteins increased during the terminal phase (distal corpus to distal cauda epididymides) of sperm maturity, although the kinase activity of membrane decreased significantly during this phase. The modulation of the phosphorylated states of these specific membrane proteins may play an important role in the maturation of epididymal spermatozoa.  相似文献   

15.
Development of the sperm's capacity to interact with the zona pellucida was investigated at the stage when the acrosome reaction (AR) is induced. The response of epididymal sperm to agents that affect the occurrence of the AR was used to monitor maturational changes. Despite the finding that sperm from the three main epididymal regions were competent to undergo ARs induced by the divalent cation ionophore A23187 (56% AR, 74% AR, and 83% AR in caput, corpus, and cauda, respectively), the cells' responses to solubilized zonae pellucidae were different. When challenged with 5 zonae equivalents/microliter, both corpus and cauda sperm shed their acrosomes in high numbers (75% AR and 86% AR, respectively), whereas caput sperm did not (23% AR). Previous work has shown that the presence of M42 monoclonal antibody (mAb) during in vitro and in vivo fertilization inhibits sperm penetration through the zona pellucida by specific interference with zonae pellucidae-induced ARs. In this study, presence of the M42 mAb did not affect the incidence of A23187-induced ARs, whereas the zona-induced ARs that occurred in both corpus and cauda sperm were inhibited fully with M42 immunoglobulin (Ig) G. In addition, the antigen recognized by M42 mAb on sperm, termed M42 Ag, was examined during epididymal maturation. Although antigen localization appeared indistinguishable by immunofluorescence on sperm taken from the caput, corpus, and cauda regions of the epididymis, modification of this antigen during epididymal transit was detected. Equilibrium-binding studies using 125I-M42 IgG demonstrated a progressive increase during epididymal transit in the amount of M42 mAb that bound to fixed cells. Corpus and cauda sperm bound 185% and 240%, respectively, of the 125I-M42 IgG detected on caput sperm. These changes in expression of M42 Ag paralleled a structural change: the Mr of the antigen decreased from a 195,000/210,000 doublet in caput sperm to a 185,000/200,000 doublet in corpus and cauda sperm, as determined by immunoblot analysis of sodium dodecyl sulfate (SDS)-extracted sperm. Results presented here demonstrate that mouse sperm develop the capacity to undergo a zona-induced AR during epididymal maturation. The M42 antigen, which is involved in the zona-induced AR, is modified during epididymal transit coincident with development of the sperm's responsiveness to zonae. Our working hypothesis, based on these results, is that development of the sperm's capacity to undergo a physiological AR is related to modification of M42 Ag.  相似文献   

16.
The bat Corynorhinus mexicanus provides an interesting experimental model for the study of epididymal sperm maturation because after spermatogenesis and the regression of the testes, this bat stores sperm in the epididymal cauda for several months. Earlier research conducted by our group suggested that sperm maturation in this species must be completed in the caudal region of the epididymis. One of the major signal transduction events during sperm maturation is the tyrosine phosphorylation of sperm proteins. The aim of the present study was to comparatively evaluate tyrosine phosphorylation in spermatozoa obtained from the caput, corpus and cauda of the epididymis during the sperm storage period. The maturation status of the sperm was determined by the percentage of capacitation and tyrosine phosphorylation in sperm obtained from the epididymis. The highest proportion of tyrosine phosphorylation was registered after the sperm had reached the cauda epididymis during the middle of the storage period. In conclusion, in Corynorhinus mexicanus and most likely in other chiropteran species with an asynchronous male reproductive pattern, epididymal sperm maturation ends in the caudal region of the epididymis and is related to the time that the sperm remains in the epididymis before mating activity.  相似文献   

17.
It has recently been shown in mice that the plasma membrane Ca2+-ATPase isoform 4 (PMCA4) is essential for sperm fertilization capacity. We analyzed whether sperm PMCA4 is formed in the rat during spermatogenesis or is synthesized in the epididymis and transferred onto sperm during sperm maturation. We could show that PMCA4 is conserved in sperm from testis to epididymis. In testis, PMCA4 mRNA was restricted to spermatogonia and early spermatocytes, while the PMCA4 protein was detected in spermatogonia, late spermatocytes, spermatids and in epididymal sperm. In epididymis PMCA4 mRNA was localized in basolateral plasma membranes of epithelial cells of the caput, corpus and cauda epididymidis. In contrast, the protein was only detectable in the epithelial cells of the caput, indicating that PMCA4 mRNA is only translated into protein in caput epithelium. In the epididymal corpus and cauda, PMCA4 mRNA and protein, respectively, was localized and in peritubular cells. Furthermore, we detected an identical distribution of PMCA4a and b splice variants in rat testis, epididymal corpus and cauda. In the caput epididymidis, where PMCA4 is located in the epithelium splice variant 4b was more prominent. Further experiments have to clarify the functional importance of the differences in the PMCA4 distribution.  相似文献   

18.
In the current study we investigated the progesterone receptor exposure on the sperm from the testis and different parts of the epididymis, the relation to the sperm maturation stage, the functionality of the progesterone receptor and the capacity of sperm to undergo acrosome reaction. Exposed progesterone receptors on spermatozoa were detected using Progesterone-BSA conjugate labeled with fluorescein isothiocyanate (P-BSA-FITC) or a monoclonal antibody against progesterone receptor, C-262. Either progesterone or calcium ionophore was used to induce acrosome reaction. A high percentage (69 +/- 8%; mean +/- SD) of spermatozoa from the cauda epididymis showed P-BSA-FITC labeling at the onset of incubation, whereas only 0.1 +/- 1 and 4 +/- 2%, of spermatozoa from the testes, caput, and corpus epididymis, respectively, were labeled. There was no significant increase in P-BSA-FITC binding during the course of a 6 hr incubation. Treatment with either 10 microM progesterone or 5 microM calcium ionophore induced acrosome reaction in cauda epididymal sperm but not in testicular sperm, caput or corpus epipidymal sperm. It is concluded that the matured sperm of the dog from cauda epididymis and freshly ejaculated sperm demonstrate a functional membrane-bound progesterone receptor while less matured spermatozoa from the testicle, caput, and corpus epididymis fail to demonstrate such a receptor. Acrosome reaction of dog sperm can be induced using either progesterone or calcium ionophore; however, the maturation stages of spermatozoa influence this occurrence.  相似文献   

19.
A 23 kDa polypeptide has been identified on the flagellum of sperm obtained from the cauda epididymis of the golden hamster. A monospecific antiserum to the 23 kDa hamster polypeptide was prepared and used to study its distribution on sperm, in the epididymis, and in epididymal fluid. In the cauda, the polypeptide is found on the midpiece and endpiece of the sperm tail, in detergent extracts of sperm, and in epididymal luminal fluid-enriched fractions. It is not present on sperm or in luminal fluid-enriched fractions from the caput epididymis. Immunocytochemical staining of epididymal tissue has demonstrated the 23 kDa polypeptide in the Golgi region of the principal cells of the proximal cauda and on sperm in the tubules of this segment and in tubules distal to it. Antiserum to the 23 kDa golden hamster polypeptide cross-reacts with sperm from rats and Chinese hamsters, but not with sperm from rabbits, cattle, mice, and guinea pigs. The antigen is localized to the tail of sperm obtained from the cauda of the rat and from the distal caput of the Chinese hamster. Immunoblots of detergent extracts of sperm and luminal fluid-enriched fractions from these two species reveal a 26 dKa polypeptide that is immunologically related to the golden hamster polypeptide.  相似文献   

20.
A fine adjustment of sperm head size and shape occurs during maturation and storage within the male excurrent duct of the rabbit. This remodelling, as judged by morphometric values of area, perimeter, length, width, and shape factors, takes place mostly in passage from the seminiferous tubules of the testis to the distal caput of the epididymis. The dimensions of sperm heads from the distal corpus of the epididymis break the general tendency toward a reduction in size and more elliptical shapes. A period of transport and storage within the epididymal cauda and vas deferens follows in which there are no further changes in sperm head morphometry. It can be concluded that the period immediately following sperm release from the testis is crucial to the final morphological maturation of spermatozoa. Moreover, the fact that changes are detected in the appearance of sperm heads at successive stages of sperm maturation suggests that the dimensions of a particular epididymal spermatozoon may be taken as an approximate indication of its relative maturity. Mol. Reprod. Dev. 51:203–209, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号