首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spectrin, the major constituent protein of the erythrocyte membrane skeleton, exhibits chaperone activity by preventing the irreversible aggregation of insulin at 25 degrees C and that of alcohol dehydrogenase at 50 degrees C. The dimeric spectrin and the two subunits, alpha-spectrin and beta-spectrin prevent such aggregation appreciably better, 70% in presence of dimeric spectrin at an insulin:spectrin ratio of 1:1, than that in presence of the tetramer of 25%. Our results also show that spectrin binds to denatured enzymes alpha-glucosidase and alkaline phosphatase during refolding and the reactivation yields are increased in the presence of the spectrin derivatives when compared with those refolded in their absence. The unique hydrophobic binding site on spectrin for the fluorescence probe, 6-propionyl-2-(dimethylamino)naphthalene (Prodan) has been established to localize at the self-associating domain with the binding stoichiometry of one Prodan/both dimeric and tetrameric spectrin. The other fluorescence probe, 1-anilinonaphthalene-8-sulfonic acid, does not show such specificity for spectrin, and the binding stoichiometry is between 3 and 5 1-anilinonaphthalene-8-sulfonic acid/dimeric and tetrameric spectrin, respectively. Regions in alpha- and beta-spectrins have been found to have sequence homology with known chaperone proteins. More than 50% similarities in alpha-spectrin near the N terminus with human Hsp90 and in beta-spectrin near the C terminus with human Hsp90 and Escherichia coli DnaJ have been found, indicating a potential chaperone-like sequence to be present near the self-associating domain that is formed by portions of alpha-spectrin near the N terminus and the beta-spectrin near the C terminus. There are other patches of sequences also in both the spectrin polypeptides, at the other termini as well as in the middle of the rod domain having significant homology with well known chaperone proteins.  相似文献   

2.
Abstract

The hydrophobic fluorescent probe Prodan binds to the self-associating domain of spectrin with 1:1 stoichiometry. A model of the self-associating domain was generated based on its homology with other domains of spectrin. Prodan was then docked onto the model, and several sites with low interaction energy were identified. To verify whether the binding of Prodan is specific towards the self-associating domain of spectrin, it was docked on to several other domains of spectrin, having a known three-dimensional structure. Analysis of the docking results suggests that the binding of Prodan to the self-associating domain of spectrin will involve hydrophobic and hydrophilic groups of Prodan. The results clearly indicate the preference of Prodan for a particular binding site of the self-associating domain.  相似文献   

3.
Spectrin was first described in erythrocytes where it forms a filamentous network in the cytoplasmic face of the plasma membrane and participates in the membrane's structural integrity in addition to controlling the lateral mobility of integral membrane proteins. In fungi, spectrin-like proteins have been described in the plasma membrane, concentrated mainly in the region of maximum apical expansion. This localization led to the idea of a spectrin based membrane skeleton in fungi participating in mechanical integrity of the plasma membrane, generating and maintaining cell polarity. The occurrence of spectrin-like proteins in filamentous fungi, yeasts and Oomycetes, however, is questionable since the presence of such proteins has only been demonstrated with immunochemical methods using antibodies whose specificity is unclear. There is no evidence of a gene coding for the high molecular weight alphabeta-spectrin in the genome of these organisms. Mass spectrometric analysis of the anti alphabeta-spectrin immunoreacting peptides from Neurospora crassa and Phytophthora infestans identified them as elongation factor 2 (NCU07700.4) and Hsp70 (PITG_13237.1), respectively. An attempt was made to correlate the reactivity of anti-spectrin antibody to a common feature of these three proteins i.e., spectrin, elongation factor 2 and heat shock protein 70, in that they all have a hydrophobic region implicated in chaperon activity.  相似文献   

4.
Jiang F  Lin W  Rao Z 《Protein engineering》2002,15(4):257-263
Molecular recognition and docking are essential to the biological functions of proteins. SOFTDOCK was one of the first molecular docking methods developed for protein-protein docking. Its ability to represent the molecular surface with different shapes and properties and to dock a variety of molecular complexes with certain conformational changes was demonstrated in a previous study. In the present work, we studied the effects of the docking parameters through statistical analysis. Seventy one typical binary complexes of different categories in PDB were also systematically docked for a test; 57 of them produced correct solutions with one set of docking parameters whereas the other 14 complexes required adjustment of the docking parameters, by decreasing the softness of the recognition and hence the background noise. We found that these 14 complexes had special structural features. Our results suggest that a variety of mechanisms may be involved in molecular recognition rather than the shape complementarity only, which is very helpful in developing more powerful methods for predicting molecular recognition.  相似文献   

5.
6.
GEMDOCK: a generic evolutionary method for molecular docking   总被引:1,自引:0,他引:1  
Yang JM  Chen CC 《Proteins》2004,55(2):288-304
We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was tested on a diverse data set of 100 protein-ligand complexes from the Protein Data Bank. In 79% of these complexes, the docked lowest energy ligand structures had root-mean-square derivations (RMSDs) below 2.0 A with respect to the corresponding crystal structures. The success rate increased to 85% if the structure water molecules were retained. We evaluated GEMDOCK on two cross-docking experiments in which each ligand of a protein ensemble was docked into each protein of the ensemble. Seventy-six percent of the docked structures had RMSDs below 2.0 A when the ligands were docked into foreign structures. We analyzed and validated GEMDOCK with respect to various search spaces and scoring functions, and found that if the scoring function was perfect, then the predicted accuracy was also essentially perfect. This study suggests that GEMDOCK is a useful tool for molecular recognition and may be used to systematically evaluate and thus improve scoring functions.  相似文献   

7.
DNA G-quadruplex is an attractive drug target for anticancer therapy. Most G-quadruplex ligands have little selectivity, due to π-stacking interaction with common G-tetrads surface. Thanks to the varieties of G-quadruplex grooves, the groove-binding ligand is expected to create high selectivity. Therefore, developing novel molecular geometries that target G-quadruplex groove has been paid growing attention. In this work, steroid FG, a special nonplanar and nonaromatic small molecule, interacting with different conformations of G-quadruplexes has been studied by molecular docking and molecular dynamics simulations. The results showed the selectivity of the hydrophobic group of steroid FG for the wide groove of antiparallel G-quadruplex. The methyl groups on the tetracyclic ring of steroid represent the specific binding ability for the small hydrophobic cavity formed by reversed stacking of G-tetrads in antiparallel G-quadruplex groove. This work provides new insight for developing new classes of G-quadruplex groove-binding ligands.  相似文献   

8.
Stilbene analogs are a new class of anti-inflammatory compounds that effectively inhibit COX-2, which is the major target in the treatment of inflammation and pain. In this study, docking simulations were conducted using AutoDock 4 software that focused on the binding of this class of compounds to COX-2 protein. Our aim was to better understand the structural and chemical features responsible for the recognition mechanism of these compounds, and to explore their binding modes of interaction at the active site by comparing them with COX-2 co-crystallized with SC-558. The docking results allowed us to provide a plausible explanation for the different binding affinities observed experimentally. These results show that important conserved residues, in particular Arg513, Phe518, Trp387, Leu352, Leu531 and Arg120, could be essential for the binding of the ligands to COX-2 protein. The quality of the docking model was estimated based on the binding energies of the studied compounds. A good correlation was obtained between experimental logAr values and the predicted binding energies of the studied compounds.  相似文献   

9.
Abstract

Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative bacterium, which is a leading causal agent for nosocomial infections. Penicillin, cephalosporin and carbapenems along with the inhibitors such as tazobactam, sulbactam and clavulanic acid are prescribed for the treatment of K. pneumoniae infections. Prolonged exposure to β-lactam antibiotics leads to the development of resistance. The major reason for the β-lactam resistance in K. pneumoniae is the secretion of the enzyme K. pneumoniae carbapenemase (KPC). Secretion of KPC-2 and its variant KPC-3 by the K. pneumoniae strains causes resistance to both the substrate imipenem and the β-lactamase inhibitors. Hence, molecular docking and dynamics studies were carried out to analyze the resistance mechanism of KPC-2–imipenem and KPC-3–imipenem at the structural level. It reveals that KPC-3-imipenem has the highest c-score value of 4.03 with greater stability than the KPC-2–imipenem c-score value of 2.36. Greater the interaction between the substrate and the β-lactamase enzyme, higher the chances of hydrolysis of the substrate. Presently available β-lactamase inhibitors are also ineffective against KPC-3-expressing strains. This situation necessitates the need for development of novel and effective inhibitors for KPC-3. We have carried out the virtual screening process to identify more effective inhibitors for KPC-3, and this has resulted in ZINC48682523, ZINC50209041 and ZINC50420049 as the best binding energy compounds, having greater binding affinity and stability than KPC-3–tazobactam interactions. Our study provides a clear understanding of the mechanism of drug resistance and provides valuable inputs for the development of inhibitors against KPC-3 expressing K. pneumoniae.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
11.
Shakil S  Khan AU 《Bioinformation》2010,4(10):468-472
Extended-spectrum β-lactamases (ESBLs) are the bacterial enzymes that make them resistant to advanced-generation cephalosporins. CTXM enzymes (the most prevalent ESBL-type) target cefotaxime. Aims of the study were: Modelling of CTX-M enzyme from bla(CTX-M) sequences of clinical Escherichia coli isolatesDocking of cefotaxime with modelled CTX-M enzymes to identify amino acid residues crucial to their interaction To hypothesize a possible relationship between 'interaction energy of the docked enzyme-antibiotic complex' and 'minimum inhibitory concentration (MIC) of the antibiotic against the bacteria producing that enzyme'. Seven E. coli strains of clinical origin which were confirmed as PCR-positive for bla(CTX-M) were selected for the study. C600 cells harboring cloned bla(CTX-M) were tested for ESBL-production by double-disk-synergy test. BLAST analysis confirmed all the bla(CTX-M) genes as blaCTX-M-15. Four of the 7 strains were found to be clonally related. Modelling was performed using Swiss Model Server. Discovery Studio 2.0 (Accelrys) was used to prepare Ramachandran plots for the modelled structures. Ramachandran Z-scores for modelled CTX-M enzymes from E. coli strains D8, D183, D253, D281, D282, D295 and D296 were found to be -0.449, 0.096, 0.027, 0.043, 0.032, -1.249 and -1.107, respectively. Docking was performed using Hex 5.1 and the results were further confirmed by Autodock 4.0. The amino acid residues Asn 104, Asn132, Gly 227, Thr 235, Gly 236, and Ser237 were found to be responsible for positioning cefotaxime into the active site of the CTX-M-15 enzyme. It was found that cefotaxime MICs for the CTX-M-15-producers increased with the increasing negative interaction energy of the enzyme-antibiotic complex.  相似文献   

12.
13.
14.
Erythroid and neuronal spectrin (fodrin) are both known to interact strongly with the aminophospholipids that occur in the inner leaflet of plasma membranes. In erythroid spectrin the positions of the binding sites within the constituent (alphaI and betaI) polypeptide chains have been defined, and also the importance of the lipid interaction in regulating the properties of the membrane. Here we report the locations of the corresponding binding sites in the alphaII and betaII chains that make up the fodrin molecule. Of the 10 lipid-binding repeats in the erythroid spectrin chains 5 are conserved in fodrin; one cluster of 3 consecutive structural repeating units in alphaI erythroid spectrin (repeats 8-10) is displaced by one repeat in alphaII fodrin (repeats 9-11). Fodrin also contains one binding site at the N-terminus of the alphaII chain, not present in the erythroid protein. The regions of the two spectrins containing equivalent lipid-binding sites show a much higher degree of sequence identity than corresponding repeats that do not share this property. The evolutionary conservation of the distribution of a large proportion of strong lipid-binding sites in the polypeptide chains of these two proteins of disparate character argues for a specific function of fodrin-phospholipid interactions in the neuron.  相似文献   

15.
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.  相似文献   

16.
Designing of rapid, facile, selective, and cost-effective biosensor technology is a growing area for the detection of various classes of pesticides. The biosensor with these features can be achieved only through the various bio-components using different transducers. This study, therefore, focuses on the usage of molecular docking, specificity tendencies, and capabilities of proteins for the detection of pesticides. Accordingly, the four transducers, acetylcholinesterase (ACH), cytochromes P450 (CYP), glutathione S-transferase (GST), and protein kinase C (PKC) were selected based on their applications including neurotransmitter, metabolism, detoxification enzyme, and protein phosphorylation. Then after molecular docking of the pesticides, fenobucarb, dichlorodiphenyltrichloroethane (DDT), and parathion onto each enzyme, the conformational behavior of the most stable complexes was further analyzed using 50 ns Molecular Dynamics (MD) simulations carried out under explicit water conditions. In the case of protein kinase C (PKC) and cytochrome P450 3A4 enzyme (CYP), the fenobucarb complex showed the most suitable combination of free energy of binding and inhibition constant ?4.42 kcal/mol (573.73 μM) and ?5.1 kcal/mol (183.49 μM), respectively. Parathion dominated for acetylcholinesterase (ACH) with ?4.57 kcal/mol (448.09 μM) and lastly dichlorodiphenyltrichloroethane for glutathione S-transferase (GST), ?5.43 kcal/mol (103.88 μM). The RMSD variations were critical for understanding the impact of pesticides as they distinctively influence the energetic attributes of the proteins. Overall, the outcomes from the extensive analysis provide an insight into the structural features of the proteins studied, thereby highlighting their potential use as a substrate in biorecognition sensing of pesticide compounds.  相似文献   

17.
A T Brünger  R Huber  M Karplus 《Biochemistry》1987,26(16):5153-5162
The trypsinogen to trypsin transition has been investigated by a stochastic boundary molecular dynamics simulation that included a major portion of the trypsin molecule and the surrounding solvent. Attention focused on the "activation domain", which crystallographic studies have shown to be ordered in trypsin and disordered in its zymogen, trypsinogen. The chain segments that form the activation domain were found to exhibit large fluctuations during the simulation of trypsin. To model a difference between trypsin and trypsinogen, the N-terminal residues Ile-16 and Val-17 were removed in the former and replaced by water molecules. As a result of the perturbation, a structural drift of 1-2 A occurred that is limited to the activation domain. Glycine residues are found to act as hinges for the displaced chain segments.  相似文献   

18.
A quantitative expression describing the behavior of a self-associating protein in subunit-exchange chromatography is derived in a form that is tractable from the viewpoint of characterizing the pertinent interactions. Its use is illustrated by application to published results for alpha-chymotrypsin, oxyhemoglobin, and the light-harvesting chlorophyll a/b protein.  相似文献   

19.
J W Zeng  P L Chong 《Biochemistry》1991,30(39):9485-9491
Steady-state fluorescence of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) has been employed to study the interacting effects between ethanol and pressure on the formation of the fully interdigitated dipalmitoylphosphatidylcholine (DPPC). At 1 atm and 20 degrees C, a dramatic change in the emission spectrum of Prodan fluorescence is observed at about 1.1-1.3 M ethanol. The emission maximum shifts to longer wavelengths, and the intensity ratio of Prodan fluorescence at 435 nm to that at 510 nm, F435/F510, decreases abruptly with increasing ethanol content. The spectral changes are correlated to the ethanol-induced phase transition of DPPC from the noninterdigitated gel state to the fully interdigitated gel state [Rowe, E.S. (1983) Biochemistry 22, 3299-3305; Simon, S.A., & McIntosh, T.J. (1984) Biochim. Biophys. Acta 773, 169-172]. The spectral changes are attributed to the probe relocation from a less polar environment to a more polar environment due to lipid interdigitation. This relocation is either due to the bulky terminal methyl group of the lipids or due to the partition of Prodan into the bulk solution or both. The present study demonstrates that Prodan is a useful probe in monitoring the formation of the ethanol-induced fully interdigitated DPPC gel phase. Pressure is found to produce spectral changes similar to those induced by ethanol when the ethanol content amounts to 0.8-1.1 M. At lower (e.g., less than 0.4 M) and higher ethanol (e.g., greater than 2.4 M) concentrations, pressure is unable to induce such spectral changes. The critical ethanol concentrations for the formation of the fully interdigitated DPPC gel phase (Cr) have been determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号