首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively.  相似文献   

2.
D-Glucosaminitol dehydrogenase, which catalyzes the conversion of D-glucosaminitol to 3-keto-D-glucosaminitol, was purified to apparent homogeneity from extracts of Agrobacterium radiobacter. This organism has constitutively depressed levels of the enzyme but expression of the enzyme is induced by addition of D-glucosamine to the medium. Purification included ammonium sulfate fractionation and chromatography on columns of DEAE-Sephacel, Octyl-Sepharose CL-4B, and Cellulofine. The purified enzyme migrated as a single band, coinciding with dehydrogenase activities specific for D-glucosaminitol and ethanol, when electrophoresed on a 7.5% polyacrylamide gel at pH 8.0. Electrophoresis on a 12.5% PAGE in the presence of 1% SDS also yielded a single band. The enzyme had an apparent molecular mass of 79 kDa, as measured by the pattern of elution from a column of Cellulofine. The results indicated that the enzyme was a dimer of identical (or nearly identical) subunits of 39.5 kDa. D-Glucosaminitol dehydrogenase required NAD+ as a cofactor and used ethanol as the preferred substrate, as well as aliphatic alcohols with 2 to 4 carbon atoms, D-glucosaminitol, D-glucosaminate, DL-allothreonine, glycerol, and erythritol as additional substrates. In 50 mM Tris-HCl buffer (pH 9.0) at 25 degrees C, the K(m) for D-glucosaminitol, ethanol, and NAD+ were 2.2, 2.0, and 0.08 mM, respectively. The enzyme had a pH optimum of 10 for D-glucosaminitol and 8.5 for ethanol. The enzyme lost substantial activity when treated with pyrazole, with certain reagents that react with sulfhydryl groups and with Zn2+ ion. The various results together suggest that the enzyme exploits different amino acid residues for the dehydrogenation of ethanol and of D-glucosaminitol.  相似文献   

3.
4.
A mannose isomerase from Agrobacterium radiobacter M-1 (formerly Pseudomonas sp. MI) was purified to electrophoretic homogeneity and characterized. A cell-free extract was separated by ammonium sulfate fractionation, Butyl-Toyopearl 650M, DEAE-Sepharose and hydroxylapatite column chromatography. Its molecular mass was estimated to be 44 kDa by SDS-PAGE and 90 kDa by gel filtration, in which the enzyme is most likely a dimer composed of two identical subunits. The purified enzyme had an optimum pH at 8.0, an optimum temperature at 60°C, a pI of 5.2 and a Km of 20 mM, and specifically converted D-mannose and D-lyxose to ketose. The N-terminal amino acid sequence was identified.  相似文献   

5.
A mannose isomerase from Agrobacterium radiobacter M-1 (formerly Pseudomonas sp. MI) was purified to electrophoretic homogeneity and characterized. A cell-free extract was separated by ammonium sulfate fractionation, Butyl-Toyopearl 650M, DEAE-Sepharose and hydroxylapatite column chromatography. Its molecular mass was estimated to be 44 kDa by SDS-PAGE and 90 kDa by gel filtration, in which the enzyme is most likely a dimer composed of two identical subunits. The purified enzyme had an optimum pH at 8.0, an optimum temperature at 60 degrees C, a pI of 5.2 and a Km of 20 mM, and specifically converted D-mannose and D-lyxose to ketose. The N-terminal amino acid sequence was identified.  相似文献   

6.
7.
8.
9.
A new procedure for the isolation of homogeneous human 5-aminolaevulinate dehydratase (porphobilinogen synthase, EC 4.2.1.24) is described in which the enzyme is purified 35000-fold and in 65-74% yield. The specific activity of the purified enzyme, 24 units/mg, is the highest yet reported. An efficient stage for the removal of haemoglobin is incorporated in the method, which has general application to the purification of other erythrocyte enzymes. The erythrocyte dehydratase (Mr 285 000) is made up of eight apparently identical subunits of Mr 35 000. The enzyme is sensitive to oxygen, and its activity is maintained by the presence of thiols such as dithioerythritol. Zn2+ is obligatory for enzyme activity, the apoenzyme being essentially inactive (approximately equal to 12% of control) when assayed in buffers devoid of Zn2+. Addition of Zn2+ to the apoenzyme restores activity as long as the sensitive thiol groups are fully reduced; optimal stimulation occurs between 100 and 300 microM-Zn2+. The human enzyme is inhibited by Pb2+ in a non-competitive fashion [KiI (dissociation constant for E X S X Pb2+ complex) = 25.3 +/- 3.0 microM; KiS (dissociation constant for E X Pb2+ complex) = 9.0 +/- 2.0 microM]. Modification of thiol groups, inactivation by oxidation, alkylation or reaction with thiophilic reagents demonstrates the importance of sensitive thiol groups for full enzymic activity.  相似文献   

10.
11.
The complete amino acid sequence of the D-glucosaminate dehydratase (GADH) alpha-subunit from Pseudomonas fluorescens was determined by PCR using genomic DNA from P. fluorescens as a template. The alpha-subunit comprises 320 amino acids and has a molecular mass of about 33.9 kDa. The primary structure of the alpha-subunit demonstrates a high similarity to the structures of thioredoxin reductase (TrxR) from many prokaryotes, especially Pseudomonas aeruginosa (identity 85%, positive 91%), Vibrio cholerae (identity 73%, positive 85%), and Escherichia coli (identity 71%, positive 83%). The purified glucosaminate dehydratase alpha(2)-enzyme exhibited NADPH-dependent TrxR activity, while TrxR from E. coli showed pyridoxal 5'-phosphate (PLP)-dependent GADH activity. The TrxR from E. coli suggests that there are three cofactor binding sites, FAD, NADPH, and PLP in the enzyme and that TrxR catalyzes the FAD- and NADPH-dependent oxidation-reduction reaction and the PLP-dependent alpha,beta-elimination reaction.  相似文献   

12.
13.
Delta-aminolaevulinate dehydratase, the second and rate-limiting enzyme of the haem-biosynthetic pathway, was purified 300-fold from induced cultures of Neurospora crassa. The native enzyme has a mol.wt. of about 350000, whereas the salt-treated enzyme after incubation at 37 degrees C for 10 min has a mol.wt. of about 232000. The mol.wt. of the subunit is about 38000. Antibodies to the purified enzyme were raised in rabbits. By using radiolabelling and immunoprecipitation techniques it was shown that addition of iron and laevulinate to iron-deficient cultures brings about a significant increase in the synthesis of the enzyme, and protoporphyrin, the penultimate end product of the pathway, represses enzyme synthesis.  相似文献   

14.
A lectin was isolated from Agrobacterium radiobacter cell surface and purified. It is a monomer of 40 kDa as shown by SDS-PAGE. The lectin has a pI of 9.15 and amino acid composition of the lectin shows that 44% of the amino acids are hydrophobic. The lectin agglutinates rabbit erythrocytes but does not agglutinate human erythrocytes. It does not show specificity for monosaccharides except for D-glucosamine. Fetuin and its N-linked glycopeptide also inhibit the activity of the lectin but greater inhibition is shown by locust bean gum and Nicotiana tobaccum (tobacco) tissue extracts.  相似文献   

15.
16.
Agrobacterium radiobacter NCIB 11883 was grown in lactose-limited continuous culture at a dilution rate of 0.045/h. Washed cells transported [14C]lactose and [methyl-14C]beta-D-thiogalactoside, a nonmetabolisable analog of lactose, at similar rates and with similar affinities (Km for transport, less than 1 microM). Transport was inhibited to various extents by the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, by unlabeled beta-galactosides and D-galactose, and by osmotic shock. The accumulation ratio for methyl-beta-D-thiogalactoside was greater than or equal to 4,100. An abundant protein (molecular weight, 41,000) was purified from osmotic-shock fluid and shown by equilibrium dialysis to bind lactose and methyl-beta-D-thiogalactoside, the former with very high affinity (binding constant, 0.14 microM). The N-terminal amino acid sequence of this lactose-binding protein exhibited some homology with several other sugar-binding proteins from bacteria. Antiserum raised against the lactose-binding protein did not cross-react with two glucose-binding proteins from A. radiobacter or with extracts of other bacteria grown under lactose limitation. Lactose transport and beta-galactosidase were induced in batch cultures by lactose, melibiose [O-alpha-D-galactoside-(1----6)alpha-D-glucose], and isopropyl-beta-D-thiogalactoside and were subject to catabolite repression by glucose, galactose, and succinate which was not alleviated by cyclic AMP. We conclude that lactose is transported into A. radiobacter via a binding protein-dependent active transport system (in contrast to the H+ symport and phosphotransferase systems found in other bacteria) and that the expression of this transport system is closely linked to that of beta-galactosidase.  相似文献   

17.
d-Gluconate dehydratase fromAchromobacter, grown ond-gluconate, was purified 100-fold by a procedure involving ammonium sulfate fractionation and preparative acrylamide gel electrophoresis. The purified enzyme appeared to be homogeneous by disc gel electrophoresis. It is an inducible enzyme with an optimal activity in the pH region 8.4–8.8, a Km value of 2.08 × 10–2 m ford-gluconate and a molecular weight of 270,000 ± 25,000. Only C5 and C6 aldonic acids possessing al-threo configuration at C2 and C3 are dehydrated. The dehydration products ofd-gluconate,d-xylonate,d-galactonate,d-fuconate andl-arabonate were identified as 2-keto-3-deoxy compounds by specific colour reactions and thin layer chromatography. Onemm Mg+ + is a powerful activator, 0.1 mm Mn+ + activates poorly and EDTA inhibits. Glutatione, dithiothreitol and mercaptoethanol had no effect, althoughp-chloromercuribenzoate (0.01 mm) decreased enzyme activity.We wish to thank Mr D. Dewettinck for skilful technical assistance. The senior author (J.D.L.) is indebted to the Fonds voor Kollektief en Fundamenteel Onderzoek (Belgium) for research and personnel grants. J.K.-M. is indebted to the Belgian government for a travel and study grant.  相似文献   

18.
Chorismate mutase and prephenate dehydratase from Alcaligenes autophus H16 were purified 470-fold with a yield of 24%. During the course of purification, including chromatography on diethylaminoethyl (DEAE)-cellulose, phenylalanine-substituted Sepharose, Sephadex G-200 and hydrogyapatite, both enzymes appeared in association. The ratio of their specific activities remained almost constant. The molecular weight of chorismate mutase-prephenast dehydratase varied from 144,000 to 187,000 due to the three different determination methods used. Treatment of electrophoretically homogeneous mutase-dehydratase with sodium dodecyl sulfate dissociated the enzyme into a single component of molecular weight 47,000, indicating a tetramer of identical subunits. The isoelectric point of the bifunctional enzyme was 5.8. Prephenate dehydrogenase was not associated with other enzyme activities; it was separated from mutasedehydratase by DEAE-cellulose chromatgraphy. Chromatography on DEAE Sephadex, Sephadex G-200, and hydroxyapatite resulted in a 740-fold purification with a yield of 10%. The molecular weight of the enzyme was 55,000 as determined by sucrose gradient centrifugation and 65,000 as determined by gel filtration or electrophoresis. Its isoelectric point was pH 6.6. In the overall conversion of chorismate to phenylpyruvate, free prephenate was formed which accumulated in the reaction mixture. The dissociation of prephenate allowed prephenate dehydrogenase to compete with prephenate dehydratase for the substrate.  相似文献   

19.
A binding protein for gamma-butyrobetaine was purified from osmotic shock fluid of an Agrobacterium sp. It was a monomeric protein with an apparent molecular weight of 52,000 or 53,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. The isoelectric point was 4.3, as determined by isoelectric focusing. Amino acid analysis of the protein showed that Asx and Glx were predominant components and that the protein contained no cysteine. The dissociation constant of this protein for gamma-butyrobetaine was found to be 0.7 microM by equilibrium dialysis. Attempts to sequence the amino-terminal end with the Edman method failed, suggesting that this region of the protein is blocked.  相似文献   

20.
OpdA is a binuclear metalloenzyme that can hydrolyze organophosphate pesticides and nerve agents. In this study the crystal structure of the complex between OpdA and phosphate has been determined to 2.20 Å resolution. The structure shows the phosphate bound in a tripodal mode to the metal ions whereby two of the oxygen atoms of PO4 are terminally bound to each metal ion and a third oxygen bridges the two metal ions, thus displacing the μOH in the active site. In silico modelling demonstrates that the phosphate moiety of a reaction product, e.g. diethyl phosphate, may bind in the same orientation, positioning the diethyl groups neatly into the substrate binding pocket close to the metal center. Thus, similar to the binuclear metallohydrolases urease and purple acid phosphatase the tripodal arrangement of PO4 is interpreted in terms of a role of the μOH as a reaction nucleophile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号