首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphenylene polymer preparation involves the cyclic trimerization polymerization of acetylated methyl benzoate with diacetyl benzene. Since the methyl benzoate groups do not take part in the polymerization they are present in high concentration. The ß-diketone ligands were placed on the surface by reaction of the methylbenzoate group with base and a methyl ketone and the triketone by reaction with base to give the ß-triketone. The ß-triketones can bind two metal ions in a known geometry that is suitable for bimetallic catalysis of the rapid polyelectron oxidation of catechols. The final catalytic surfaces were prepared by treating the chemically modified polymer with copper(II), iron(II) and palladium(II) acetonitrile complexes with non-coordinating BF4 as the anion. Since the metal ions contain no strongly coordinating ligand, they are very reactive species. These surfaces catalyzed the rapid air oxidation of 3,5-di-tert-butylcatechol (DTBC). The diketone surfaces gave only 3,5-di-tert-butyl-o-quinone (DTBQ) while the triketone surfaces gave ring-cleaved products, confirming the special catalytic effect of the triketone surface. Also, only the triketone catalysts showed any activity for ring cleavage oxidation of DTBQ. These catalysts were much more reactive than previous ones using the same polyphenylene polymer but without the methyl benzoate groups. With these polymers the di- and triketone groups were placed on the surface by chemical modification of the unpolymerized acetyl groups.  相似文献   

2.
The emission spectral band shapes of several polypyridine-ligand (PP) bridged bis-ruthenium(II) complexes imply that Ru(II)/Ru(III) electronic coupling is weaker in their lowest energy metal to ligand charge transfer (MLCT) excited states than in their corresponding mixed valence ground states. In general, the amplitudes of the vibronic contributions to emission band shapes decrease markedly with the excited state-ground state energy differences, and it is expected that complexes with degenerate, or mixed valence excited states will have very weak vibronic side bands if configurational mixing of the degenerate MLCT excited states is substantial. However, the bimetallic PP-bridged ruthenium complexes emit at significantly lower energy than their monometallic analogs, but the vibronic contributions to their 77 K emission spectra are very similar to those of their monometallic complexes analogs. This indicates that the mixed valence excited states of the bimetallic complexes are electronically localized.  相似文献   

3.
A new approach to ligand design for the sequestration of metal-oxo cations has been called stereognostic coordination chemistry, in that the ligand incorporates a traditional Lewis base coordination to the metal center and a hydrogen bond donor to interact with the oxo group. This paper reports the synthesis of ligands that are more rigid and sterically predisposed to bind the targeted UO22+ cation. These are the tripod ligands tris-N,N′,N′′-[2-(2-carboxy-phenoxy)ethyl]-1,4,7-triazacyclononane bis-hydrochloride (ETAC · 2HCl) and tris-N,N′,N′′-[2-(2-carboxy-4-decyl-phenoxy)ethyl]-1,4,7-triazacyclononane tris-hydrochloride (DETAC · 3HCl), which chelate uranyl with a tris-carboxylate coordination sphere and provide a hydrogen bond donor through a protonated amine on the triazacyclononane macrocycle to interact with one uranyl oxo atom. Structural models predict that upon uranyl binding the hydrogen bond donor must point directly towards the oxo atom, enforcing a stereognostic interaction. Both ETAC and DETAC chelate the uranyl ion; DETAC is a powerful extractant and will quantitatively extract uranyl into an organic phase at pH 1.9 and above. The extraction coefficient is estimated to be 1014 in neutral aqueous conditions. Vibrational spectra of 18O labeled UO22+ have been used to probe the stereognostic coordination to uranyl utilizing hydrogen bonding.  相似文献   

4.
The synthesis of the mixed ligand mono metallic [Ru(dpop′)(tppz)]2+ and bimetallic [(dpop′)Ru(tppz)Ru(dpop′)]4+ (dpop′ = dipyrido(2,3-a:3′,2′-j)phenazine; tppz = 2,3,5,6 tetra-(2-pyridyl)pyrazine) complexes is described. The [Ru(dpop′)(tppz)]2+ complex display an intense absorption at 518 nm which is assigned to a Ru(dπ) → dpop′ (π∗) MLCT transition, and at 447 nm which is assigned to a Ru(dπ) → tppz(π∗) MLCT transition. It undergoes emission at RT in CH3CN with λem = 722 nm. The bimetallic [(dpop′)Ru(tppz)Ru(dpop′)]4+ complex shows a low energy absorption shoulder near 635 nm assigned to a Ru(dπ) → tppz(π∗) MLCT transition and an intense peak at 542 nm due to Ru(dπ) → dpop′ (π∗) MLCT transition. The bimetallic complex also emits at RT in CH3CN with λem = 785 nm. Cyclic voltammetry shows reversible Ru+2/+3 oxidations at 1.68 V for the monometallic complex and Ru+2/+3 oxidation couples at +1.94 and +1.70 V for the bimetallic complex.  相似文献   

5.
A novel long chain diphosphine ligand with a pyridine-diamino bridge, 2,6-bis(N-benzyl-N-diphenylphosphinomethylamino)pyridine (PNP1), was prepared conveniently using the Mannich reaction of HPPh2 with paraformaldehyde and 2,6-bis(N-benzylamino)pyridine in high yield. Reactions of the ligand with metal complexes, M(COD)Cl2 (M = Pd, Pt), M(CH3CN)4ClO4 (M = Cu, Ag) and M(CO)6 (M = Mo, W) afforded the corresponding 10-numbered monometallic macrocyclic complexes with an uncoordinated pyridyl bridge. The monometallic chelate PdCl2(PNP1) continued to react with Ag+ or Cu+ giving the μ-Cl bridged bicyclic metallic complex (μ-Cl)2[PdCl(PNP1)]2. The diphenylphosphine group coordinated with metal ion in cis-form in all the 10-numbered macrocyclic metal complexes. Ligand PNP1 and another known analogous 2,6-bis(N-diphenylphosphinoamino)pyridine (PNP2) reacted with Au(SMe2)Cl giving the corresponding bimetallic Au2Cl2(PNP1) and Au2Cl2(PNP2), respectively. The latter bimetallic complexes continued to react with Ag+ and diphosphine ligand to give the corresponding bimetallic macrocyclic complexes Au2(ligand)2(ClO4)2. All the complexes were characterized and the structures of some complexes were confirmed by X-ray single crystallography determination.  相似文献   

6.
The crystal structure, magnetic, redox and spectroscopic properties of a novel unsymmetrical dinuclear copper(II) complex, prepared by the reaction between copper(II) perchlorate, sodium acetate and the unsymmetrical, binucleating ligand HTPPNOL, where HTPPNOL is N,N,N′-tris-(2-pyridylmethyl)-1,3-diaminopropan-2-ol, is reported. HTPPNOL (1 equiv.) reacted with 1 equiv. of copper(II) ion, in methanol, and produced the mononuclear copper complex [Cu(TPPNOL)](ClO4)(BPh4) (1). On the other hand, the reaction of 1 equiv. of HTPPNOL with 2 equiv. each of copper (II) ion and acetate, in methanol, produced the dinuclear complex [Cu2(TPPNOL)(OOCCH3)](ClO4)2 (2), whose structure has been determined by X-ray diffraction. In complex 2, as a result of the inherent asymmetry of the ligand HTPPNOL, one copper ion is five-coordinated (distorted trigonal-bipyramidal) while the other copper is four-coordinated (distorted square-planar). Then, as a result of the presence of distinct geometries for the metal centres, complex 2 exhibits a ferromagnetic coupling (J=+25.41 cm−1). Titration experiments carried out on the dinuclear complex suggest a pKa=8.0, which was related to the aquo/hydroxo equilibrium. Complex 2 is able to oxidise 3,5-di-tert-butylcatechol to the respective o-quinone. The oxidation reaction was studied by following the appearance of the quinone spectrophotometrically, at pH 8.0 and 25 °C.  相似文献   

7.
A spectroscopic and spectroelectrochemical comparison is made among homo- and heterobimetallic complexes of the form [(bpy)2Ru(BL)Os(byp)2]4+, [(bpy)2Ru(BL)Ru(bpy)2]4+ and [(bpy)2Os(BL)Os(bpy)2]4+ (BL = 2,3,-bis(2′-pyridyl)pyrazzine(dpp),2,3-bis(2′-pyridyl)quinoxaline(dpq) or 2,3-bis(2′-pyridyl)benzoquinoxaline(dpb); bpy = 2,2′-bipyridine). It has been postulated that the spectroscopy of the mixed-metal bimetallic complexes bridged by polyazine bridging ligands can be assigned by comparison to those of the homobimetallic analogs. We have in hand a unique series of complexes where such a postulate can be tested. Utilizing the visible spectra of the homobimetallic Os,Os and Ru,Ru systems, we have been able to generate the spectra of the mixed-metal complexes. Some differences have been seen, particularly in the energy of the Os → dpp 3MLCT. Oxidative spectroelectrochemistry studies on the homobimetallic ruthenium or osmium based systems indicate that upon complete oxidation of both metal centers, transitions in the visible are lost. Hence, partial oxidation of the ruthenium based homobimetallics and Os, Ru mixed-metal bimetallics allows for the direct comparison of the spectroscopic character of the one remaining ruthenium chromophore within these mixed-valence systems. Oxidation to form the Os(III)/Ru(II) species and the Ru(III)/Ru(II) species resulted in similar spectra. This establishes further that the visible spectroscopy of mixed-metal systems of this nature can be accurately interpreted by comparison to the homobimetallic analogs.  相似文献   

8.
Preparations by the high dilution method are reported for seven macrocyclic thioether-esters and thioether-thioesters (L1–;L7). Yields in these reactions between thiodiglycolyl dichloride and appropriate ,ω-diols or dithiols range from 10 to 51%. The compounds are characterized by 1H and 13C NMR, IR and high resolution mass spectroscopy. They react with salts of Pd(II), Pt(II) and Ag(I) to form complexes of which MX2·L2, (M = Pt, X = Cl; M = Pd, X = Cl, Br, I, SCN), [Pd(L2)2][CF3SO3]2·H2O and [Ag(L5)2][CF3SO3]·C2H5OH have been isolated and characterized by elemental analysis, IR and NMR spectroscopy. NMR spectra indicate reversible dissociation of the ligand occurs in dimethyl sulfoxide solvent for PdCl2·L2 but not for the Pt analogue. For PtCl2·L2, spectra indicate that the ligand is undergoing a conformational ‘wag’ about its pair of equivalent sulfurs. These remain bound to the metal while the unique sulfur moves from the apical position of the coordination sphere to a non-coordinated situation. Simultaneously, inversions at the bound sulfurs are occurring.  相似文献   

9.
The Schiff base ligand, oxalic bis[(2-hydroxybenzylidene)hydrazide], H2L, and its Cu(II), Ni(II), Co(II), UO2(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

10.
Complexes of Ru(II) containing the pincer ligand [N(2-PPh2-4-Me-C6H3)2] (PNPPh) were prepared. The complex (PNPPhH)RuCl2 (1) was treated with 2 equiv AgOTf to produce the triflate complex (PNPPhH)Ru(OTf)2 (2). Complex 1 was also treated with an excess of NaBH4 to give a bimetallic complex [(PNPPh)RuH3]2 (3). A number of methods, including X-ray crystallography, NMR spectroscopy, and computational studies, were used to probe the structure of 3. Addition of Lewis bases to 3 resulted in octahedral complexes containing a hydride ligand trans to a dihydrogen ligand.  相似文献   

11.
The first 1:2 metal complexes of 2-(2′-pyridyl)quinoxaline (L) have been isolated. The physical and spectroscopic characteristics of the compounds [MCl2L2] (M = Ni, Cu, Cd) and [CuIL2](PF6) are described. The structure of the copper(I) complex has been determined by X-ray diffraction methods. Crystals are orthorhombic, space group Pcnb with A = 11.014(2), B = 12.886(2), C = 17.806(4) Å, V = 2527.1(9) Å3 and Z = 4. Refinement of the structure gave a final R factor of 0.046 (Rw = 0.041) for 814 unique reflections having I > 2.0σ(I). The ligand L acts as a bidentate chelate, the ligated atoms being the pyridine nitrogen and the nearest quinoxaline nitrogen. The structure of [CuL2]+ consists of a distorted tetrahedral arrangement around the copper(I) atom with Cu---N bond lengths of 2.023(6) and 2.059(5) Å and the N---Cu---N angle of the chelating ligand equal to 80.6(2)°. A monomeric trans pseudo-octahedral stereochemistry is assigned for the [MCl2L2] complexes.  相似文献   

12.
The technique of calculating the strain energy of metal ion complexes as a function of metal to ligand bond length (Hancock and McDougall, J. Am. Chem. Soc., 102 (1980) 6553) is used to study best-fit sizes of metal ions for coordinating with tetraaza and triaza macrocyles. In addition to varying the metal to ligand bond length in the calculations, different coordination geometries of the metal ion are also examined. The metal to nitrogen (M-N) bond lengths, and coordination geometries, that give lowest energies for several N-donor macrocyles, are calculated by molecular mechanics, and 16-aneN4 (1,5,9,13-tetraazacyclohexadecane) is found, contrary to popular belief, to coordinate best with very small metal ions, with lowest energy occurring for a slightly flattened tetrahedral metal ion of M-N length = 1.81 Å. The best-fit size and geometry for coordination in 12-aneN4 (1,4,7,10-tetraazacyclotetradecane) is an M-N length of 2.15 Å and square pyramidal geometry, and with cyclam (1,4,8,11-tetraazacyclotetradecane) an M-N length of 2.06 Å and planar coordination that is approximately square.  相似文献   

13.
Addition of (Me3SiNHCH2CH2)2NH (H3[N3(TMS)]) or (Me3SiNH-o-C6H4)2NH (H3[ArN3(TMS)]) to a solution of TaMe5 yields [N3(TMS)]TaMe2 or [ArN3(TMS)]TaMe2, respectively. An X-ray study of [ArN3(TMS)]TaMe2 showed it to have an approximate trigonal bipyramidal structure in which the two methyl groups are in equatorial positions and the triamido ligand is approximately planar. Addition of (C6F5NHCH2CH2)2NH (H3[N3(C6F5)]) to TaMe5 yields first [(C6F5NCH2CH2)2NH]TaMe3, which then decomposes to [(C6F5NCH2CH2)2N]TaMe2. An X-ray study of [(C6F5NCH2CH2)2N]TaMe2 shows it to be approximately a trigonal bipyramid, but the C6F5 rings are oriented so that they lie approximately in the TaN3 plane and two ortho fluorines interact weakly with the metal. Trimethylaluminum attacks the central nitrogen atom in [N3(TMS)]TaMe2 to give [(Me3SiNCH2CH2)2NAlMe3]TaMe2, an X-ray study of which shows it to be a trigonal bipyramidal species similar to the first two structures, except that the C-Ta-C bond angle is approximately 30° smaller (106.6(12)°). Addition of B(C6F5)3 to [(C6F5NCH2CH2)2NH]TaMe3 yields {[(C6F5NCH2CH2)2NH]TaMe2}+ {B(C6F5)3Me}, the structure of which most closely resembles that of [(Me3SiNCH2CH2)2NAlMe3]TaMe2 in that the C-Ta-C angle is 102.0(6)°. The C6F5 rings in {[(C6F5NCH2CH2)2NH]TaMe2}+ are turned roughly perpendicular to the TaN3 plane, i.e. ortho fluorines do not interact with the metal in this molecule.  相似文献   

14.
In this paper, a series of 4,5-diazafluoren-9-one-derived (Dafo-derived) diimine ligands and their corresponding Cu(I) complexes with bis(2-(diphenylphosphanyl)phenyl) ether as the auxiliary ligand are synthesized. Relationships between diimine ligands and photophysical properties of their corresponding Cu(I) complexes are discussed in detail. It is found that the introduction of an electron-donor moiety into one diimine ligand leads to a dramatic red shift of the absorption of corresponding Cu(I) complex, while, an electron-acceptor moiety demonstrates no obvious effect on Cu(I) complex absorption when introduced into diimine ligand. In addition, it is found that the intraligand charge transfer of Dafo-derived ligands acts as an efficient luminescence quencher within their corresponding Cu(I) complexes, leading to luminescence absence from metal-to-ligand-charge-transfer (MLCT) excited state.  相似文献   

15.
Gas phase photoelectron spectroscopy (PES) is used to investigate the bonding and electronic structure in (fv) [M(CO)2]2 (fv = fulvalene, η55-C10H82−; M = Co, Rh). The results for these bimetallic complexes are also compared to those for the analogous monometallic complexes CpM(CO)2 (Cp = η5−C5H5; M = Co, Rh) which have been reported previously. The low valence ionization patterns observed for CpCo(CO)2 and (fv)[Co(CO)2]2 are very similar, indicating that there is little electronic interaction between the two metals of the dicobalt complex. The spectrum of (fv)[Rh(CO)2]2 also is very similar to the spectrum of CpRh(CO)2, except that the first metal ionizations in the bimetallic rhodium compound show a significant splitting (0.45 eV). This splitting is due to electronic interaction between the two metal centers which occurs via communication through the fulvalene π system. The differences in electronic structure are compared to the differences in electrochemical behavior of the Co and Rh fulvalene complexes.  相似文献   

16.
The effects of N-alkylation on the redox potential of the couples NiLi2+/NiLi+, L = tetraaza-14-membered-macrocyclic ligands, and on the properties of the monovalent nickel complexes in aqueous solutions are reported for 14 complexes. The spectra and lifetimes of the NiLi+ complexes are reported. The self-exchange rates for the couples NiLi2+/NiLi+ were determined. Two of the ligands were synthesized for the first time for this study. Cyclic voltammetry and pulse radiolysis were used. The results point out that: (i) N-alkylation always shifts the redox potential to a less cathodic one; this effect stems to a large degree from the decrease in the solvation energy of the complex caused by the N-alkylation of the ligand. (ii). The lifetime of the monovalent complexes is not linearly related to the redox potential of the NiLi2+/NiLi+ couples. (iii) The NiLi+ complexes exist in several isomeric forms; the rate of the isomerization depends on the structure of the ligand. (iv) Different isomers of NiLi+ may be formed when the complex NiLi2+ is reduced by different reagents; therefore, the pulse-radiolytically formed NiLi+ complexes might have different properties than those formed electrochemically.  相似文献   

17.
Copper(II) complexes were synthesized and characterized by means of elemental analysis, IR and visible spectroscopies, EPR and electrochemistry, as well as X-ray structure crystallography. The group consists of discrete mononuclear units with the general formula [Cu(II)(Hbpa)2](A)2·nH2O, where Hbpa=(2-hydroxybenzyl-2-pyridylmethyl)amine and A=ClO4 −, n=2 (1), CH3COO, n=3 (2), NO3 −, n=2 (3) and SO4 2−, n=3 (4). The structures of the ligand Hbpa and complex 1 have been determined by X-ray crystallography. Complexes 1–4 have had their UV–Vis spectra measured in both MeCN and DMF. It was observed that the compounds interact with basic solvents, such that molecules coordinate to the metal in axial positions in which phenol oxygen atoms are coordinated in the protonated forms. The values were all less than 1000 M−1 cm−1. EPR measurements on powdered samples of 1–3 gave g/A values between 105 and 135 cm−1, typical for square planar coordination environments. Complex 4·3H2O exhibits a behaviour typical for tetrahedral coordination. The electrochemical behaviour for complexes 1 and 2 was studied showing irreversible redox waves for both compounds.  相似文献   

18.
The palladation of potentially chelating bisimidazolium ligand precursors with palladium acetate gives bridging bimetallic, chelating monometallic, and homoleptic tetracarbene complexes. The coordination mode of the biscarbene ligand has been identified by spectroscopic analysis and crystallographic characterization of representative complexes, including the first example of a biscarbene A-frame structure. Substantial concentrations of free acetate favor the formation of tetracarbene over biscarbene palladium complexes, while in the absence of a base, the concentration of reactants influences the selectivity for bridging bimetallic versus chelating monometallic species. Preliminary kinetic and mechanistic studies indicate that chelating biscarbene palladium acetate complexes are intermediates in the formation of the homoleptic tetracarbene complexes. Probably due to the high trans effect of the biscarbene ligand, such complexes are more efficient palladating agents for bisimidazolium salts than palladium acetate.  相似文献   

19.
It is shown that metal complexes of the biodegradable ligand ethylenediaminedisuccinic acid (edds) present antimicrobial activity towards fungi and bacteria. [Cd(edds)], in particular, is more toxic than free Cd2+ to Aspergillus niger, behaving as a 'Trojan Horse' in the facilitated delivery of the toxic metal into the fungus.  相似文献   

20.
A dinuclear Mn(II) di(μ-hydroxo) complex having hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (=TpiPr2) reacted with benzoic acid to yield a dinuclear Mn(II) tri(μ-carboxylato) complex, TpiPr2Mn-(μ-OBz)3-Mn(TpiPr2H). X-ray crystallography reveals the unsymmetrical coordination environments for the manganese centers. One of the two TpiPr2 ligands, which bound to the five-coordinated Mn center, is protonated by the action of the third carboxylic acid and the resulting non-Mn-binding N–H moiety forms an intramolecular hydrogen bond with the oxygen donor of a carboxylate ligand. Steric congestion in the bimetallic core results in the large separation of the manganese centers bridged by the syn-anti carboxylate ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号