首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2B4 (CD244) is a receptor belonging to the CD2-signaling lymphocytic activation molecule family and is found on all murine NK cells and a subset of NKT and CD8+ T cells. Murine 2B4 is expressed as two isoforms (2B4 short and 2B4 long) that arise by alternative splicing. They differ only in their cytoplasmic domains and exhibit opposing function when expressed in the RNK-16 cell line. The ligand for 2B4, CD48, is expressed on all hemopoietic cells. Previous studies have shown that treatment of NK cells with a 2B4 mAb results in increased cytotoxicity and IFN-gamma production. In this report, we used CD48+/- variants of the P815 tumor cell line and 2B4 knockout mice to show that engagement of 2B4 by its counterreceptor, CD48, expressed on target cells leads to an inhibition in NK cytotoxicity. The addition of 2B4 or CD48 mAb relieves this inhibition resulting in enhanced target cell lysis. This 2B4-mediated inhibition acts independently of signaling lymphocytic activation molecule-associated protein expression. Imaging studies show that 2B4 preferentially accumulates at the interface between NK and target cells during nonlytic events also indicative of an inhibitory receptor. This predominant inhibitory function of murine 2B4 correlates with increased 2B4 long isoform level expression over 2B4 short.  相似文献   

2.
Murine 2B4 (CD244) is a cell surface receptor expressed on all NK cells, gammadelta-T cells, a subset of CD8(+) T cells, and all CD14(+) monocytes. 2B4 binds to CD48 with high affinity, and cross-linking 2B4 with anti-2B4 Ab in vitro causes activation of NK cells. To study its physiological role, we have generated, by gene targeting, mice deficient in the expression of this cell surface molecule. The expression of lymphoid cell surface markers on PBMC and splenocytes of mice homozygous for the mutation in 2B4 (2B4(-/-)) is identical to that in wild-type mice. However, thymocytes from female 2B4(-/-) mice, but not male 2B4(-/-) mice, have an increase in the immature CD4(-)/CD8(-) population. To investigate the in vivo role of 2B4, wild-type and 2B4(-/-) mice were injected with CD48(+) and CD48(-) metastatic B16 melanoma cells. Wild-type mice rejected CD48(+) melanoma poorly compared with CD48(-) tumor cells, suggesting that ligation of 2B4 by CD48 on melanoma cells is inhibitory. In keeping with this, male 2B4(-/-) mice showed enhanced ability to reject CD48(+) melanoma cells. However, female 2B4(-/-) mice poorly rejected both CD48(+) and CD48(-) melanoma cells, revealing a gender-specific and CD48-independent defect in mice lacking 2B4. In vitro and in vivo experiments reveal a complex role of NK cells in gender specificity.  相似文献   

3.
Human NK cells can be activated by a variety of different cell surface receptors. Members of the SLAM-related receptors (SRR) are important modulators of NK cell activity. One interesting feature of the SRR is their homophilic interaction, combining receptor and ligand in the same molecule. Therefore, SRR cannot only function as activating NK cell receptors, but also as activating NK cell ligands. 2B4 (CD244) is the only SRR that does not show homophilic interaction. Instead, 2B4 is activated by binding to CD48, a GPI-anchored surface molecule that is widely expressed in the hemopoietic system. In this study, we show that 2B4 also can function as an activating NK cell ligand. 2B4-expressing target cells can efficiently stimulate NK cell cytotoxicity and IFN-gamma production. Using soluble receptor fusion proteins and SRR-transfected cells, we show that 2B4 does not bind to any other SRR expressed on NK cells, but only interacts with CD48. Lysis of 2B4-expressing target cells can be blocked by anti-CD48 Abs and triggering of CD48 in a redirected lysis assay can stimulate NK cell cytotoxicity. This demonstrates that 2B4 can stimulate NK cell cytotoxicity and cytokine production by interacting with NK cell expressed CD48 and adds CD48 to the growing number of activating NK cell receptors.  相似文献   

4.
The biological function of 2B4, a CD48-binding molecule expressed on T cells with an activation/memory phenotype, is not clear. In this report, we demonstrate that proliferation of CD8(+) T cells is regulated by 2B4. Proliferative responses of CD8(+) T cells were significantly reduced by anti-2B4 Ab. The effects were not potentiated by anti-CD48 Ab, suggesting that the observed responses were driven by 2B4/CD48 interactions. Surprisingly, the 2B4/CD48-dependent proliferative responses were also observed in the absence of APCs. This suggests that 2B4/CD48 interactions can occur directly between T cells. Furthermore, when activated 2B4(+)CD8(+) T cells were mixed with 2B4(-)CD8(+) TCR-transgenic T cells and specific peptide-loaded APC, the proliferation of the latter T cells was inhibited by anti-2B4 Ab. Taken together, this suggests that 2B4 on activated/memory T cells serves as a ligand for CD48, and by its ability to interact with CD48 provides costimulatory-like function for neighboring T cells.  相似文献   

5.
2B4 is expressed on all NK and a subset of memory/effector CD8(+) T cells. 2B4 binds to CD48 and activates NK cytotoxicity, but its function on CD8(+) T cells is not clear. Furthermore, two isoforms of 2B4 (2B4S and 2B4L) exist in mice but the role of individual isoforms is not known. To address these questions, we generated primary T cell cultures from L(d)-specific 2C/Rag2(-/-) TCR transgenic mice and transduced them with 2B4S or 2B4L. 2B4S- or 2B4L-transduced T cells showed greater cytotoxicity over control cells against CD48(+) and CD48(-) targets, suggesting that ligation of 2B4 by CD48 on target cells was not necessary for 2B4 function. Rather, 2B4/CD48 interaction on adjacent T cells appeared to be critical for cytotoxicity. Therefore, 2B4 functions as a costimulator of CD8(+) T cells in MHC-restricted cytotoxicity. We conclude that 2B4/CD48 interactions among T cells themselves can augment CTL lysis of their specific targets.  相似文献   

6.
Humans are the only natural reservoir of measles virus (MV), one of the most contagious viruses known. MV infection and the profound immunosuppression it causes are currently responsible for nearly one million deaths annually. Human signaling lymphocytic activation molecule (hSLAM) was identified as a receptor for wild-type MV as well as for MV strains prepared as vaccines. To better evaluate the role of hSLAM in MV pathogenesis and MV-induced immunosuppression, we created transgenic (tg) mice that expressed the hSLAM molecule under the control of the lck proximal promoter. hSLAM was expressed on CD4(+) and CD8(+) T cells in the blood and spleen and also on CD4(+), CD8(+), CD4(+) CD8(+), and CD4(-) CD8(-) thymocytes. Wild-type MV, after limited passage on B95-8 marmoset B cells, and the Edmonston laboratory strain of MV infected hSLAM-expressing cells. There was a direct correlation between the amount of hSLAM expressed on the cells' surface and the degree of viral infection. Additionally, MV infection induced downregulation of receptor hSLAM and inhibited cell division and proliferation of hSLAM(+) but not hSLAM(-) T cells. Therefore, these tg mice provide the opportunity for analyzing and comparing MV-T cell interactions and MV pathogenesis in cells expressing only the hSLAM MV receptor with those of tg mice whose T cells selectively express another MV receptor, CD46.  相似文献   

7.
Infection of genetically susceptible mice with the LP-BM5 mixture of murine leukemia viruses including an etiologic defective virus (BM5def) causes an immunodeficiency syndrome called murine AIDS (MAIDS). The disease is characterized by interactions between B cells and CD4(+) T cells resulting in polyclonal activation of both cell types. It is known that BM5def is expressed at highest levels in B cells and that B cells serve as viral APC. The CD19-CD21 complex and CD22 on the surface of B cells play critical roles as regulators of B cell responses to a variety of stimuli, influencing cell activation, differentiation, and survival. CD19 integrates positive signals induced by B cell receptor ligation by interacting with the protooncogene Vav, which leads to subsequent tyrosine phosphorylation of this molecule. In contrast, CD22 negatively regulates Vav phosphorylation. To analyze the role of CD19, CD21, Vav, and CD22 in MAIDS, we infected mice deficient in CD19, CD21 (CR2), Vav-1, or CD22 with LP-BM5 murine leukemia viruses. Infected CR2(-/-) mice developed MAIDS with a time course and severity indistinguishable from that of wild-type mice. In contrast, CD19 as well as Vav-1 deficiency restricted viral replication and suppressed the development of typical signs of MAIDS including splenomegaly, lymphadenopathy, and hypergammaglobulinemia. Finally, CD22 deficiency was found to accelerate MAIDS development. These results provide novel insights into the B cell signaling pathways required for normal induction and progression of MAIDS.  相似文献   

8.
Molecular basis of the dual functions of 2B4 (CD244)   总被引:1,自引:0,他引:1  
2B4 belongs to the CD2 family of molecules and is expressed on all NK, gammadelta, and memory CD8(+) (alphabeta) T cells. The murine NK receptor 2B4 exhibits both inhibitory and activating functions, whereas human 2B4 has been reported to be an activating molecule. How murine 2B4 can act both as an activating and inhibitory receptor and what distinguishes its function from human 2B4 have remained largely unknown. We use here a model system that allows the study of human and murine 2B4 under identical and controlled conditions. These studies reveal that both human and mouse 2B4 can activate or inhibit NK cells. We show here that the level of 2B4 expression and the degree of 2B4 cross-linking play a significant role in the regulation of signaling lymphocyte activation molecule-associated protein-mediated activation by 2B4. A high level of 2B4 expression, heavy cross-linking, and relative paucity of signaling lymphocyte activation molecule-associated protein promote inhibitory function. Our studies demonstrate how a single receptor can have opposing function depending on the degree of receptor expression, extent of its ligation, and the relative abundance of certain adaptor molecules. Because the levels of 2B4 and CD48 are dynamically regulated, these findings have implications for the regulation of NK cell function.  相似文献   

9.
The outcome of viral infections is dependent on the function of CD8+ T cells which are tightly regulated by costimulatory molecules. The NK cell receptor 2B4 (CD244) is a transmembrane protein belonging to the Ig superfamily which can also be expressed by CD8+ T cells. The aim of this study was to analyze the role of 2B4 as an additional costimulatory receptor regulating CD8+ T cell function and in particular to investigate its implication for exhaustion of hepatitis C virus (HCV)-specific CD8+ T cells during persistent infection. We demonstrate that (i) 2B4 is expressed on virus-specific CD8+ T cells during acute and chronic hepatitis C, (ii) that 2B4 cross-linking can lead to both inhibition and activation of HCV-specific CD8+ T cell function, depending on expression levels of 2B4 and the intracellular adaptor molecule SAP and (iii) that 2B4 stimulation may counteract enhanced proliferation of HCV-specific CD8+ T cells induced by PD1 blockade. We suggest that 2B4 is another important molecule within the network of costimulatory/inhibitory receptors regulating CD8+ T cell function in acute and chronic hepatitis C and that 2B4 expression levels could also be a marker of CD8+ T cell dysfunction. Understanding in more detail how 2B4 exerts its differential effects could have implications for the development of novel immunotherapies of HCV infection aiming to achieve immune control.  相似文献   

10.
Transgenic mice have been obtained with genes coding for an alpha beta T-cell receptor that recognizes the male-specific antigen H-Y in association with the Db class I major histocompatibility complex molecule. Most if not all of the T-cells express the beta chain encoded by the transgene and show allelic exclusion of endogenous beta genes. In contrast, the expression of the alpha transgene does not completely block rearrangement and formation of functional endogenous alpha genes. In H-2b transgenic female mice the transgenic T-cell receptor is functionally expressed on at least 30% of CD8+ peripheral T-lymphocytes as indicated by their ability to lyse male target cells. Also in transgenic H-2b male mice a large proportion of peripheral T-cells appear to express the transgenic receptor. However, these cells do not react with male target cells because they show only low level or no expression of CD8 cell interaction molecules. Tolerance is established in the male transgenic thymus through deletion of CD4+CD8+ immature thymocytes.  相似文献   

11.
We have previously shown that coincubation of purified B cells with IL-2-propagated NK cells can result in the induction of IL-13 mRNA and that the induction requires the presence of CD48 on B cells and 2B4 on NK cells. Because both of these molecules are expressed on NK cells, it is surprising that very little IL-13 mRNA can be detected in the absence of B cells. We have now found that incubation of NK cells on plates containing immobilized anti-CD48 Abs results in the clustering of CD48 and colocalization with 2B4 on the same cell. This colocalization, together with the requirement for SAP, the signal transducer for 2B4, is necessary for the induction of IL-13 mRNA expression. Activation of NK cell via CD48 on another cell may require a similar ability to alter the configuration of 2B4 to activate downstream signaling. By the use of double CD2/2B4 knockout mice, we have also shown that the induction of NK cell activation by anti-CD48 or by B cells is not due to the release of inhibitory effects of 2B4.  相似文献   

12.
Complement receptor (CR) type 2 (CR2/CD21) is normally expressed only during the immature and mature stages of B cell development. In association with CD19, CR2 plays an important role in enhancing mature B cell responses to foreign Ag. We used a murine Vlambda2 promoter/Vlambda2-4 enhancer minigene to develop transgenic mice that initiate expression of human CR2 (hCR2) during the CD43(+)CD25(-) late pro-B cell stage of development. We found peripheral blood B cell numbers reduced by 60% in mice expressing high levels of hCR2 and by 15% in mice with intermediate receptor expression. Splenic B cell populations were altered with an expansion of marginal zone cells, and basal serum IgG levels as well as T-dependent immune responses were also significantly decreased in transgenic mice. Mice expressing the highest levels of hCR2 demonstrated in the bone marrow a slight increase in B220(int)CD43(+)CD25(-) B cells in association with a substantial decrease in immature and mature B cells, indicative of a developmental block in the pro-B cell stage. These data demonstrate that stage-specific expression of CR2 is necessary for normal B cell development, as premature receptor expression substantially alters this process. Alterations in B cell development are most likely due to engagement of pre-B cell receptor-mediated or other regulatory pathways by hCR2 in a CD19- and possibly C3 ligand-dependent manner.  相似文献   

13.
B7-1 (CD80)-transfected P815 tumor cells were previously shown to elicit tumor-eradicating immunity that leads to the regression of B7-1+ P815 tumors after transient growth in normal syngeneic (DBA/2) mice. Here, we show that not only the B7-1 molecule but also the B7-2 (CD86) molecule contributed to the eradication of B7-1+ P815 tumors. The B7-1 molecule that contributed to the eradication of B7-1+ P815 tumors was expressed not only on the tumor cells but also on host APCs, including MAC-1+ cells. The B7-2 molecule that contributed to the eradication of B7-1+ P815 tumors was expressed only on host APCs, such as B220+ cells, and not on the tumor cells. In spite of the fact that B7-expressing host APCs contributed to the eradication of B7-1+ P815 tumors, only CD8+ T cells without help from CD4+ T cells were important for tumor eradication. Taken together, these findings indicate that in addition to the ability of B7-1-transfected tumor cells to stimulate CD8+ T cell-mediated tumor-eradicating immunity directly, such tumor cells can also stimulate CD8+ T cell-mediated tumor-eradicating immunity indirectly as a result of cross-priming through B7-expressing host APCs.  相似文献   

14.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

15.
CD8(+) T cells depend on the alphabeta TCR for Ag recognition and function. However, Ag-activated CD8(+) T cells can also express receptors of the innate immune system. In this study, we examined the expression of NK receptors on a population of CD8(+) T cells expressing high levels of CD44 (CD8(+)CD44(high) cells) from normal mice. These cells are distinct from conventional memory CD8(+) T cells and they proliferate and become activated in response to IL 2 via a CD48/CD2-dependent mechanism. Before activation, they express low or undetectable levels of NK receptors but upon activation with IL-2 they expressed significant levels of activating NK receptors including 2B4 and NKG2D. Interestingly, the IL-2-activated cells demonstrate a preference in the killing of syngeneic tumor cells. This killing of syngeneic tumor cells was greatly enhanced by the expression of the NKG2D ligand Rae-1 on the target cell. In contrast to conventional CD8(+) T cells, IL-2-activated CD8(+)CD44(high) cells express DAP12, an adaptor molecule that is normally expressed in activated NK cells. These observations indicate that activated CD8(+)CD44(high) cells express receptors of both the adaptive and innate immune system and may play a unique role in the surveillance of host cells that have been altered by infection or transformation.  相似文献   

16.
Human CD150 (SLAM) is a glycoprotein expressed on the surface of T, B, natural killer, and dendritic cells. The extracellular domain of CD150 is the receptor for measles virus and CD150 acts as a co-activator on T and B cells. We characterized the mouse and human CD150 genes, each of which comprises seven exons spanning approximately 32 kb. Mouse CD150 mRNA was detected in T cells and in most thymocyte subsets, except CD4-8- cells. Surprisingly, the CD4-8- thymocytes of CD3gammadeltanull mice, but not of Ragnull or severe combined immunodeficiency mice, expressed CD150. Whereas high levels of CD150 were found in Th1 cells, only small amounts were detectable in Th2 cells. CD150 expression was up-regulated upon in vitro activation of mouse T cells by anti-CD3. The complete mouse CD150 gene is highly homologous to its human orthologue in terms of nucleotide sequences and intron/exon organization. The human genomic sequences indicate that all isoforms detected so far have arisen from alternative splicing events. As judged by fluorescence in situ hybridization, mouse CD150 mapped to Chromosome (Chr) 1, band 1H2.2-2.3, and human CD150 was found on Chr 1q22. Human and mouse CD150 share sequence homologies with six other genes, five of which - CD84, CD229 (Ly-9), CD244 (2B4), CD48, and 19A - are localized in a 250-kb segment in close proximity to the human gene. Their location and their sequence similarities strongly suggest that the CD150 family of cell surface receptors arose via successive duplications of a common ancestral gene.  相似文献   

17.
2B4 (CD244) is an important activating receptor for the regulation of natural killer (NK) cell responses. Here we show that 2B4 is heavily and differentially glycosylated in primary human NK cells and NK cell lines. The differential glycosylation could be attributed to sialic acid residues on N- and O-linked carbohydrates. Using a recombinant fusion protein of the extracellular domain of 2B4, we demonstrate that N-linked glycosylation of 2B4 is essential for the binding to its ligand CD48. In contrast, sialylation of 2B4 has a negative impact on ligand binding, as the interaction between 2B4 and CD48 is increased after the removal of sialic acids. This was confirmed in a functional assay system, where the desialylation of NK cells or the inhibition of O-linked glycosylation resulted in increased 2B4-mediated lysis of CD48-expressing tumor target cells. These data demonstrate that glycosylation has an important impact on 2B4-mediated NK cell function and suggest that regulated changes in glycosylation during NK cell development and activation might be involved in the regulation of NK cell responses.  相似文献   

18.
We investigated the role of Peyer's patch (PP) dendritic cells (DCs) in the production of interferon (IFN)-γ from naïve CD4+ T cells of T cell receptor transgenic mice. PP DCs were found to prime naïve CD4+ T cells for the production of higher levels of IFN-γ, when compared to spleen (SP) DCs. However, a similar level of interleukin-12 (IL-12) production was observed for PP and SP DCs stimulated via the CD40 molecule. In addition, PP DCs expressed slightly higher levels of B7.2 (CD86) compared to SP DCs. This data demonstrates that PP DCs have a distinct function in the induction of IFN-γs and suggests that PP DCs may enhance IFN-γ production via another cytokine or costimulatory molecule, in addition to IL-12.  相似文献   

19.
CD48 is a glycosyl phosphatidylinositol anchor protein known to be virtually expressed by all human leukocytes. Its ligand, 2B4, is a signaling lymphocyte activation molecule-related receptor involved in NK cell activation. Because dendritic cells (DCs) are strong inducers of NK cell functions, we analyzed the expression of CD48 in different human DC subsets. We observed that monocytes differentiating in DCs promptly down-regulate CD48. Similarly, DCs isolated from inflamed lymph nodes generally do not express CD48. Plasmocytoid DCs do not express CD48 either, whereas myeloid DCs harbored in blood, bone marrow, and thymus express it. In addition, we showed that CD48 expression in DCs affects NK cell functions during NK/DC cross-talk, because NK cells obtained from normal donors and from X-linked lymphoproliferative disease patients are, respectively, triggered or inhibited by DCs expressing surface CD48. Remarkably, IFN-gamma production by lymph node NK cells, in contrast to blood NK cells, can be negatively modulated by 2B4/CD48 interactions, indicating a 2B4 inhibitory pathway in lymph node NK cells. Therefore, the CD48 deficiency of DCs harbored in inflamed lymph nodes that we report in this study might be relevant to successfully activate lymph node NK cells in the early phase of the immune response. Our results show that distinct subsets of human DCs, differently from all other mononuclear hemopoietic cells, specifically do not express CD48. Moreover, the expression of CD48 depends on the anatomic location of DCs and might be related to the tissue-specific 2B4 function (activating or inhibitory) of the NK cells with which they interact.  相似文献   

20.
Sle1c is a sublocus of the NZM2410-derived Sle1 major lupus susceptibility locus. We have shown previously that Sle1c contributes to lupus pathogenesis by conferring increased CD4(+) T cell activation and increased susceptibility to chronic graft-versus-host disease (cGVHD), which mapped to the centromeric portion of the locus. In this study, we have refined the centromeric sublocus to a 675-kb interval, termed Sle1c2. Mice from recombinant congenic strains expressing Sle1c2 exhibited increased CD4(+) T cell intrinsic activation and cGVHD susceptibility, similar to mice with the parental Sle1c. In addition, B6.Sle1c2 mice displayed a robust expansion of IFN-γ-expressing T cells. NZB complementation studies showed that Sle1c2 expression exacerbated B cell activation, autoantibody production, and renal pathology, verifying that Sle1c2 contributes to lupus pathogenesis. The Sle1c2 interval contains two genes, only one of which, Esrrg, is expressed in T cells. B6.Sle1c2 CD4(+) T cells expressed less Esrrg than B6 CD4(+) T cells, and Esrrg expression was correlated negatively with CD4(+) T cell activation. Esrrg encodes an orphan nuclear receptor that regulates oxidative metabolism and mitochondrial functions. In accordance with reduced Esrrg expression, B6.Sle1c2 CD4(+) T cells present reduced mitochondrial mass and altered mitochondrial functions as well as altered metabolic pathway utilization when compared with B6 CD4(+) T cells. Taken together, we propose Esrrg as a novel lupus susceptibility gene regulating CD4(+) T cell function through their mitochondrial metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号