首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio fluvialis strain H-08942 was isolated from an infant aged 6 months who was suffering from cholera-like diarrhea in India. This strain showed the typical multidrug-resistance phenotype of an SXT element. It was resistant to sulfamethoxazole (Su), trimethoprim (Tm), chloramphenicol (Cm) and streptomycin (Sm), in addition to other antibiotics such as ampicillin (Am), furazolidone (Fz), nalidixic acid (Na), and gentamicin (Gm). The SXT element is a Vibrio cholerae-derived integrative and conjugative element (ICE) that has also been referred to as a conjugative transposon. Our goal was to find a relationship between these resistant phenotypes and the presence of the SXT element in this unique strain. By using PCR, we detected the antibiotic resistance genes, the integrase gene and the attP attachment site of SXT element. Cloning and DNA sequencing results showed that both the SXT integrase gene and its attP site of V. fluvialis were similar but not identical to those of V. cholerae. The SXT integrase gene of V. fluvialis has a 99% identity to that of V. cholerae, and the attP site of SXT of V. fluvialis is variant and shorter (641 bp) than that of V. cholerae (785 bp). It was possible for the SXT of V. fluvialis to be transferred by conjugation to a laboratory strain of Escherichia coli. Here, we report the detection of a variant SXT element in species other than V. cholerae, with molecular characterization and analysis of its integrase gene and its attP site.  相似文献   

2.
Vibrio cholerae O139, the first non-O1 serogroup of V. cholerae to give rise to epidemic cholera, is characteristically resistant to the antibiotics sulphamethoxazole, trimethoprim, chloramphenicol and streptomycin. Resistances to these antibiotics are encoded by a 62 kb self-transmissible, conjugative, chromosomally integrating element designated the 'SXT element'. We found that the SXT element integrates site specifically into both V. cholerae and Escherichia coli K-12 into the 5' end of prfC , the gene encoding peptide chain release factor 3. Integration of the SXT element interrupts the chromosomal prfC gene, but the element encodes a new 5' end of prfC that restores the reading frame of this gene. The recombinant prfC allele created upon element integration is functional. The integration and excision mechanism of the SXT element shares many features with site-specific recombination found in lambdoid phages. First, like λ, the SXT element forms a circular extrachromosomal intermediate through specific recombination of the left and right ends of the integrated element. Second, chromosomal integration of the element occurs via site-specific recombination in a 17 bp sequence found in the circular form of the SXT element and a similar 17 bp sequence in prfC . Third, both chromosomal integration and excision of the SXT element were found to require an element-encoded int gene with strong similarities to the λ integrase family. Based on the properties of the SXT element, we propose to classify this element as a CONSTIN, an acronym for a conjugative, self-transmissible, integrating element.  相似文献   

3.
V. cholerae strain VT5104 capable of donor activity in conjugation has been constructed by the genetic technique based on plasmid RP4::Mucts62 integration into V. cholerae chromosome due to plasmid homology with Mucts62 inserted into the chromosome. The gene for histidine synthesis has been mobilized and transferred into the recipient cells from VT5104 donor. The conjugants obtained are able to efficiently transfer his+ gene included into the plasmid structure in conjugation with eltor recipient. Thus, the constructed strain VT5104 generates R' plasmids carrying V. cholerae chromosomal genes.  相似文献   

4.
SXT is an integrative and conjugative element (ICE) isolated from Vibrio cholerae. This approximately 100-kb ICE encodes resistance to multiple antibiotics and integrates site specifically into the chromosome. SXT excises from the chromosome to form a circular but nonreplicative extrachromosomal molecule that is required for its transfer. Here we found that a significant fraction of freshly isolated SXT exconjugants contained tandem SXT arrays. There was heterogeneity in the size of the SXT arrays detected in single exconjugant colonies. Some arrays consisted of more than five SXTs arranged in tandem. These extended arrays were unstable and did not persist during serial passages. The mechanism accounting for the generation of SXT arrays is unknown; however, array formation was not dependent upon recA and appeared to depend on conjugative transfer. While such arrays did not alter the transfer frequency of wild-type SXT, they partially complemented the transfer deficiency of a Deltaxis SXT mutant, which is ordinarily unable to generate the extrachromosomal intermediate required for SXT transfer. Exconjugants derived from donor strains that harbored tandem arrays of SXT and R391, an SXT-related element, contained functional hybrid elements that arose from recA-independent recombination between the two ICEs. Thus, arrays of SXT-related elements promote the creation of novel ICEs.  相似文献   

5.
The Vibrio cholerae SXT element encodes resistance to multiple antibiotics and is a conjugative, self-transmissible, and chromosomally integrating element (a constin). Excision and self-transfer of the SXT element require an element-encoded integrase. We now report that the SXT element can also mobilize the plasmids RSF1010 and CloDF13 in trans as well as chromosomal DNA in an Hfr-like manner. SXT element-mediated mobilization of plasmids and chromosomal DNA, unlike its self-transfer, is not dependent upon excision of the element from the chromosome. These results raise the possibility that the SXT element and other constins play a general role in horizontal gene transfer among gram-negative bacteria.  相似文献   

6.
Integrating conjugative elements (ICEs) are self-transmissible mobile elements that transfer between bacteria via conjugation and integrate into the host chromosome. SXT and related ICEs became prevalent in Asian Vibrio cholerae populations in the 1990s and play an important role in the dissemination of antibiotic resistance genes in V. cholerae. Here, we carried out genomic and functional analyses of ICEPdaSpa1, an SXT-related ICE derived from a Spanish isolate of Photobacterium damselae subsp. piscicida, the causative agent of fish pasteurellosis. The approximately 102-kb DNA sequence of ICEPdaSpa1 shows nearly 97% DNA sequence identity to SXT in genes that encode essential ICE functions, including integration and excision, conjugal transfer, and regulation. However, approximately 25 kb of ICEPdaSpa1 DNA, including a tetracycline resistance locus, is not present in SXT. Most ICEPdaSpa1-specific DNA is inserted at loci where other SXT-related ICEs harbor element-specific DNA. ICEPdaSpa1 excises itself from the chromosome and is transmissible to other Photobacterium strains, as well as to Escherichia coli, in which it integrates into prfC. Interestingly, the P. damselae virulence plasmid pPHDP10 could be mobilized from E. coli in an ICEPdaSpa1-dependent fashion via the formation of a cointegrate between pPHDP10 and ICEPdaSpa1. pPHDP10-Cm integrated into ICEPdaSpa1 in a non-site-specific fashion independently of RecA. The ICEPdaSpa1::pPHDP10 cointegrates were stable, and markers from both elements became transmissible at frequencies similar to those observed for the transfer of ICEPdaSpa1 alone. Our findings reveal the plasticity of ICE genomes and demonstrate that ICEs can enable virulence gene transfer.  相似文献   

7.
8.
The Vibrio cholerae SXT element is a conjugative self-transmissible chromosomally integrating element that encodes resistance to multiple antibiotics. SXT integrates in a site-specific fashion at prfC and excises from the chromosome to form a circular but nonreplicative extrachromosomal form. Both chromosomal integration and excision depend on an SXT-encoded recombinase, Int. Here we found that Int is necessary and sufficient for SXT integration and that int expression in recipient cells requires the SXT activators SetC and SetD. Although no xis-like gene was annotated in the SXT genome, Int was not sufficient to mediate efficient SXT chromosomal excision. We identified a novel SXT Xis that seems to function as a recombination directionality factor (RDF), facilitating SXT excision and inhibiting SXT integration. Although unrelated to any previously characterized RDF, Xis is similar to five hypothetical proteins that together may constitute a new family of RDFs. Using real-time quantitative PCR assays to study SXT excision from the chromosome, we determined that while SXT excision is required for SXT transfer, the percentage of cells containing an excised circular SXT does not appear to be a major factor limiting SXT transfer; i.e., we found that most cells harboring an excised circular SXT molecule do not act as SXT donors. In the absence of prfC, SXT integrated into several secondary attachment sites but preferentially into the 5' end of pntB. SXT excision and transfer from a donor containing pntB::SXT were reduced, suggesting that the SXT integration site may also influence the element's transmissibility.  相似文献   

9.
10.
The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA.  相似文献   

11.
Burrus V  Marrero J  Waldor MK 《Plasmid》2006,55(3):173-183
SXT is an integrating conjugative element (ICE) that was initially isolated from a 1992 Vibrio cholerae O139 clinical isolate from India. This approximately 100-kb ICE encodes resistance to multiple antibiotics. SXT or closely related ICEs are now present in most clinical and some environmental V. cholerae isolates from Asia and Africa. SXT-related ICEs are not limited to V. cholerae. It is now clear that so-called IncJ elements such as R391 are closely related to SXT. More than 25 members of the SXT/R391 family of ICEs have now been identified in environmental and clinical isolates of diverse species of gamma-proteobacteria worldwide. In this review, we discuss the diversity, evolution and biology of this family of ICEs.  相似文献   

12.
Conjugation enables horizontal transmission of DNA among bacteria, thereby facilitating the rapid spread of genes such as those conferring resistance to antibiotics. Cell-cell contact is required for conjugative DNA transfer but does not ensure its success. The presence of certain plasmids in potential recipient cells inhibits redundant transfer of these plasmids from competent donors despite contact between donor and recipient cells. Here, we used two closely related integrating conjugative elements (ICEs), SXT and R391, to identify genes that inhibit redundant conjugative transfer. Cells containing SXT exclude transfer of a second copy of SXT but not R391 and vice versa. The specific exclusion of SXT and R391 is dependent upon variants of TraG and Eex, ICE-encoded inner membrane proteins in donor and recipient cells, respectively. We identified short sequences within each variant that determine the exquisite specificity of self-recognition; these data suggest that direct interactions between TraG and Eex mediate exclusion.  相似文献   

13.
14.
Vibrio cholerae O139 is the first non-O1 serogroup of V. cholerae to give rise to epidemic cholera. Apparently, this new serogroup arose from an El Tor O1 strain of V cholerae, but V. cholerae O139 is distinguishable from V. cholerae El Tor O1 by virtue of its novel antigenic structure and also its characteristic pattern of resistances to the antibiotics sulfamethoxazole, trimethoprim, streptomycin, and furazolidone. We found that the first three of these antibiotic resistances are carried on an approximately 62-kb self-transmissible, chromosomally integrating genetic element which we have termed the SXT element. This novel conjugative transposon-like element could be conjugally transferred from V. cholerae O139 to V cholerae O1 and Escherichia coli strains, where it integrated into the recipient chromosomes in a site-specific manner independent of recA. To study the potential virulence properties of the SXT element as well as to improve upon the live attenuated O139 vaccine strain Bengal-2, a large internal deletion in the SXT element was crossed on to the Bengal-2 chromosome. The resulting strain, Bengal-2.SXT(s), is sensitive to sulfamethoxazole and trimethoprim and colonizes the intestines of suckling mice as well as wild-type strains do, suggesting that the SXT element does not encode a colonization factor. Derivatives of Bengal-2.SXT(s) are predicted to be safe, antibiotic-sensitive, live attenuated vaccines for cholera due to the O139 serogroup.  相似文献   

15.
Transposon Tn916 is a 16.4-kb broad-host-range conjugative transposon originally detected in the chromosome of Enterococcus faecalis DS16. Transposition of Tn916 and related transposons involves excision of a free, nonreplicative, covalently closed circular intermediate that is substrate for integration. Excisive recombination requires two transposon-encoded proteins, Xis-Tn and Int-Tn, whereas the latter protein alone is sufficient for integration. Here we report that conjugative transposition of Tn916 requires the presence of a functional integrase in both donor and recipient strains. We have constructed a mutant, designated Tn916-int1, by replacing the gene directing synthesis of Int-Tn by an allele inactivated in vitro. In mating experiments, transfer of Tn916-int1 from Bacillus subtilis to E. faecalis was detected only when the transposon-encoded integrase was supplied by trans-complementation in both the donor and the recipient. These results suggest that conjugative transposition of Tn916 requires circularization of the element in the donor followed by transfer and integration of the nonreplicative intermediate in the recipient.  相似文献   

16.
17.
Bacterial conjugation normally involves the unidirectional transfer of DNA from donor to recipient. Occasionally, conjugation results in the transfer of DNA from recipient to donor, a phenomenon known as retrotransfer. Two distinct models have been generally considered for the mechanism of retrotransfer. In the two-way conduction model, no transfer of the conjugative plasmid is required. The establishment of a single conjugation bridge between donor and recipient is sufficient for the transfer of DNA in both directions. In the one-way conduction model, transfer of the conjugative plasmid to the recipient is required to allow the synthesis of a new conjugation bridge for the transfer of DNA from recipient to donor. We have tested these models by the construction of a mutant of the self-transmissible, IncP plasmid RK2lac that allows the establishement of the conjugation bridge but is incapable of self-transfer. Four nucleotides of the nic region of the origin of transfer (oriT) were changed directly in the 67-kb plasmid RK2lac by a simple adaptation of the vector-mediated excision (VEX) strategy for precision mutagenesis of large plasmids (E. K.Ayres, V. J. Thomson, G. Merino, D. Balderes, and D. H. Figurski, J. Mol. Biol. 230:174-185, 1993). The resulting RK2lac oriT1 mutant plasmid mobilizes IncQ or IncP oriT+ plasmids efficiently but transfers itself at a frequency which is 10(4)-fold less than that of the wild type. Whereas the wild-type RK2lac oriT+ plasmid promotes the retrotransfer of an IncQ plasmid from Escherichia coli or Pseudomonas aeruginosa recipients, the RK2lac oriT1 mutant is severely defective in retrotransfer. Therefore, retrotransfer requires prior transfer of the conjugative plasmid to the recipient. The results prove that retrotransfer occurs by two sequential DNA transfer events.  相似文献   

18.
19.
The role of the DNA primase of IncP plasmids was examined with a derivative of RP4 containing Tn7 in the primase gene (pri). The mutant was defective in mediating bacterial conjugation, with the deficiency varying according to the bacterial strains used as donors and recipients. Complementation tests involving recombinant plasmids carrying cloned fragments of RP4 indicated that the primase acts to promote some event in the recipient cell after DNA transfer and that this requirement can be satisfied by plasmid primase made in the donor cell. It is proposed that the enzyme or its products or both are transmitted to the recipient cell during conjugation, and the role of the enzyme in the conjugative processing of RP4 is discussed. Specificity of plasmid primases was assessed with derivatives of RP4 and the IncI1 plasmid ColIb-P9, which is known to encode a DNA primase active in conjugation. When supplied in the donor cell, neither of the primases encoded by these plasmids substituted effectively in the nonhomologous conjugation system. Since ColIb primase provided in the recipient cell acted weakly on transferred RP4 DNA, it is suggested that the specificity of these enzymes reflects their inability to be transmitted via the conjugation apparatus of the nonhomologous plasmid.  相似文献   

20.
Relaxosomes are specific nucleoprotein structures involved in DNA-processing reactions during bacterial conjugation. In this work, we present evidence indicating that plasmid R388 relaxosomes are composed of origin of transfer (oriT) DNA plus three proteins TrwC relaxase, TrwA nic-cleavage accessory protein and integration host factor (IHF), which acts as a regulatory protein. Protein IHF bound to two sites (ihfA and ihfB) in R388 oriT, as shown by gel retardation and DNase I footprinting analysis. IHF binding in vitro was found to inhibit nic-cleavage, but not TrwC binding to supercoiled DNA. However, no differences in the frequency of R388 conjugation were found between IHF- and IHF+ donor strains. In contrast, examination of plasmid DNA obtained from IHF- strains revealed that R388 was obtained mostly in relaxed form from these strains, whereas it was mostly supercoiled in IHF+ strains. Thus, IHF could have an inhibitory role in the nic-cleavage reaction in vivo. It can be speculated that triggering of conjugative DNA processing during R388 conjugation can be mediated by IHF release from oriT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号