首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flux of energetic and nutrient resources across habitat boundaries can exert major impacts on the dynamics of the recipient food web. Competition for these resources can be a key factor structuring many ecological communities. Competition theory suggests that competing species should exhibit some partitioning to minimize competitive interactions. Species should partition both in situ (autochthonous) resources and (allochthonous) resources that enter the food web from outside sources. Allochthonous resources are important sources of energy and nutrients in many low productivity systems and can significantly influence community structure. The focus of this paper is on: (i) the influence of resource partitioning on food web stability, but concurrently we examine the compound effects of; (ii) the trophic level(s) that has access to allochthonous resources; (iii) the amount of allochthonous resource input; and (iv) the strength of the consumer–resource interactions. We start with a three trophic level food chain model (resource–consumer–predator) and separate the higher two trophic levels into two trophospecies. In the model, allochthonous resources are either one type available to both consumers and predators or two distinct types, one for consumers and one for predators. The feeding preferences of the consumer and predator trophospecies were varied so that they could either be generalists or specialists on allochthonous and/or autochthonous resources. The degree of specialization influenced system persistence by altering the structure and, therefore, the indirect effects of the food web. With regard to the trophic level(s) that has access to allochthonous resources, we found that a single allochthonous resource available to both consumers and predators is more unstable than two allochthonous resources. The results demonstrate that species populating food webs that experience low to moderate allochthonous resources are more persistent. The results also support the notion that strong links destabilize food web dynamics, but that weak to moderate strength links stabilize food web dynamics. These results are consistent with the idea that the particular structure, resource availability, and relative strength of links of food webs (such as degree of specialization) can influence the stability of communities. Given that allochthonous resources are important resources in many ecosystems, we argue that the influence of such resources on species and community persistence needs to be examined more thoroughly to provide a clearer understanding of food web dynamics.  相似文献   

2.
3.
Predation risk in aquatic systems is often assessed by prey through chemical cues, either those released by prey or by the predator itself. Many studies on predation risk focus on simple pairwise interactions, with only a few studies examining community‐level and ecosystem responses to predation risk in species‐rich food webs. Further, of these few community‐level studies, most assume that prey primarily assess predation risk through chemical cues from consumed prey, even heterospecific prey, rather than just those released by the predator. Here, we compared the effects of different predation cues (predator presence with or without consumed prey) on the structure and functioning of a speciose aquatic food web housed in tropical bromeliads. We found that the mere presence of the top predator (a damselfly) had a strong cascading effect on the food web, propagating down to nutrient cycling. This predation risk cue had no effect on the identity of colonizing species, but strongly reduced the abundance and biomass of the macroinvertebrate colonists. As a result, bacterial biomass and nitrogen cycling doubled, with a concomitant decrease in bacterial production, but CO2 flux was unaffected. These community and ecosystem effects of predator presence cues were not amplified by the addition of chemical cues from consumed prey. Our results show that some of the consequences of predation risk observed in controlled experiments with simplified food webs may be observed in a natural, species‐rich food web.  相似文献   

4.
Reynolds PL  Bruno JF 《PloS one》2012,7(5):e36196
Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.  相似文献   

5.
Jeremy W. Fox 《Oikos》2006,115(1):97-109
Topological food webs illustrating “who eats whom” in different systems exhibit similar, non‐random, structures suggesting that general rules govern food web structure. Current food web models correctly predict many measures of food web topology from knowledge of species richness and connectance (fraction of possible predator–prey links that actually occur), together with assumptions about the ecological rules governing “who eats whom”. However, current measures are relatively insensitive to small changes in topology. Improvement of, and discrimination among, current models requires development of new measures of food web structure. Here I examine whether current food web models (cascade, niche, and nested hierarchy models, plus a random null model) can predict a new measure of food web structure, structural stability. Structural stability complements other measures of food web topology because it is sensitive to changes in topology that other measures often miss. The cascade and null models respectively over‐ and underpredict structural stability for a set of 17 high‐quality food webs. While the niche and nested hierarchy models provide unbiased predictions on average, their 95% confidence intervals frequently fail to include the observed data. Observed structural stabilities for all models are overdispersed compared to model predictions, and predicted and observed structural stabilities are uncorrelated, indicating that important sources of variation in structural stability are not captured by the models. Crucially, poor model performance arises because observed variation in structural stability is unrelated to variation in species richness and connectance. In contrast, almost all other measures of food web topology vary with species richness and connectance in natural webs. No model that takes species richness and connectance as the only input parameters can reproduce observed variation in structural stability. Further progress in predicting and explaining food web topology will require fundamentally new models based on different input parameters.  相似文献   

6.
The cascade model successfuly predicts many patterns in reported food webs. A key assumption of this model is the existence of a predetermined trophic hierarchy; prey are always lower in the hierarchy than their predators. At least three studies have suggested that, in animal food webs, this hierarchy can be explained to a large extent by body size relationships. A second assumption of the standard cascade model is that trophic links not prohibited by the hierarchy occur with equal probability. Using nonparametric contingency table analyses, we tested this ”equiprobability hypothesis” in 16 published animal food webs for which the adult body masses of the species had been estimated. We found that when the hierarchy was based on body size, the equiprobability hypothesis was rejected in favor of an alternative, ”predator-dominance” hypothesis wherein the probability of a trophic link varies with the identity of the predator. Another alternative to equiprobabilty is that the probability of a trophic link depends upon the ratio of the body sizes of the two species. Using nonparametric regression and liklihood ratio tests, we show that a size-ratio based model represents a significant improvement over the cascade model. These results suggest that models with heterogeneous predation probabilities will fit food web data better than the homogeneous cascade model. They also suggest a new way to bridge the gap between static and dynamic food web models. Received: 3 February 1999 / Accepted: 26 October 1999  相似文献   

7.
Food web stability: the influence of trophic flows across habitats   总被引:12,自引:0,他引:12  
In nature, fluxes across habitats often bring both nutrient and energetic resources into areas of low productivity from areas of higher productivity. These inputs can alter consumption rates of consumer and predator species in the recipient food webs, thereby influencing food web stability. Starting from a well-studied tritrophic food chain model, we investigated the impact of allochthonous inputs on the stability of a simple food web model. We considered the effects of allochthonous inputs on stability of the model using four sets of biologically plausible parameters that represent different dynamical outcomes. We found that low levels of allochthonous inputs stabilize food web dynamics when species preferentially feed on the autochthonous sources, while either increasing the input level or changing the feeding preference to favor allochthonous inputs, or both, led to a decoupling of the food chain that could result in the loss of one or all species. We argue that allochthonous inputs are important sources of productivity in many food webs and their influence needs to be studied further. This is especially important in the various systems, such as caves, headwater streams, and some small marine islands, in which more energy enters the food web from allochthonous inputs than from autochthonous inputs.  相似文献   

8.
Strong and weak trophic cascades along a productivity gradient   总被引:7,自引:0,他引:7  
Jonathan M. Chase 《Oikos》2003,101(1):187-195
Variation in the strengths of predator effects, although commonly observed in natural communities, and predicted from theoretical models, remains poorly understood in the study of food web interactions and community structure. In this study, I first showed that prey species in benthic pond food webs were highly variable in their susceptibility to predators. Some were vulnerable throughout their lives, whereas others were vulnerable as juveniles, but able to grow to a size-refuge. Next, I showed that herbivore and predator abundance increased along a natural productivity gradient among 29 ponds, and herbivore species composition shifted from dominance by vulnerable to dominance by invulnerable herbivore species along this gradient. However, there was a considerable amount of variation both in herbivore biomass and composition at intermediate productivity; some were dominated by small species and others by larger species. Finally, in in situ exclosure experiments, I found that predator effects were strong and cascaded to plants in a low productivity pond and in an intermediate productivity pond dominated by small herbivore species. Alternatively, in a high productivity pond and in an intermediate productivity pond dominated by larger herbivores, I found that predator effects on prey biomass were weak, and did not cascade to plants.  相似文献   

9.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

10.
In the study of food webs, the existence and explanation of recurring patterns, such as the scale invariance of linkage density, predator–prey ratios and mean chain length, constitute long-standing issues. Our study focused on litter-associated food webs and explored the influence of detritivore and predator niche width (as δ13C range) on web topological structure. To compare patterns within and between aquatic and terrestrial ecosystems and take account of intra-habitat variability, we constructed 42 macroinvertebrate patch-scale webs in four different habitats (lake, lagoon, beech forest and cornfield), using an experimental approach with litterbags. The results suggest that although web differences exist between ecosystems, patterns are more similar within than between aquatic and terrestrial web types. In accordance with optimal foraging theory, we found that the niche width of predators and prey increased with the number of predators and prey taxa as a proportion of total taxa in the community. The tendency was more marked in terrestrial ecosystems and can be explained by a lower per capita food level than in aquatic ecosystems, particularly evident for predators. In accordance with these results, the number of links increased with the number of species but with a significantly sharper regression slope for terrestrial ecosystems. As a consequence, linkage density, which was found to be directly correlated to niche width, increased with the total number of species in terrestrial webs, whereas it did not change significantly in aquatic ones, where connectance scaled negatively with the total number of species. In both types of ecosystem, web robustness to rare species removal increased with connectance and the niche width of predators. In conclusion, although limited to litter-associated macroinvertebrate assemblages, this study highlights structural differences and similarities between aquatic and terrestrial detrital webs, providing field evidence of the central role of niche width in determining the structure of detritus-based food webs and posing foraging optimisation constraints as a general mechanistic explanation of food web complexity differences within and between ecosystem types.  相似文献   

11.
Recent syntheses of trophic cascade and biomanipulation research have suggested that the effects of piscivores on planktivorous fish populations are reduced, when planktivores are capable of outgrowing predator gape limitation and in systems with complex food web interactions. These hypotheses, however, have not been tested in long-term, whole-lake, experiments where processes such as fish recruitment and compensatory food web responses may be important. We conducted a replicated whole-lake experiment to test for the effects of supplemental piscivore introductions on food webs of eutrophic lakes dominated by deep-bodied planktivores. Responses to piscivore enhancement were compared between lakes differing in food web structure due to the presence of omnivorous gizzard shad (Dorosoma cepedianum). A significant decrease in the relative abundance of juvenile planktivorous fish, and an increase in total benthic macroinvertebrate density was observed in lakes containing mainly bluegills (Lepomus machrochirus). In contrast, lakes containing gizzard shad exhibited no significant responses to piscivore manipulation. Our results support the hypothesis that food webs in lakes dominated by deep-bodied planktivorous fish species respond weakly to piscivore enhancement. In addition, our findings support the hypothesis that cascading trophic interactions are weaker in lake ecosystems with more complex food web interactions such as those containing gizzard shad.  相似文献   

12.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   

13.
Breakdown of leaf litter is essential for providing detrital resources for food webs but can be impaired by anthropogenic activities, which may disrupt energy flow to consumers. We investigated the relationship between leaf breakdown and food web structure in 12 streams with or without mining impacts on South Island, New Zealand. Six streams received inputs of acid mine drainage (pH 2.5–4.9), three were naturally acidic (pH ~5.0), and three were circumneutral (pH ~6.8). Streams affected by mining either had highly acidic water (pH <3) or iron precipitates present on substrata. Breakdown rates of leaves were significantly lower in mining-affected streams than circumneutral (by almost 50%) but not naturally acidic streams and were driven primarily by microbial activity, as shredding invertebrates were often absent. Mining-affected stream webs were simplified structures with fewer species and links than those in other streams. With few species to process leaf litter and transfer detrital resources, inputs of AMD disrupted both the mechanisms responsible for breakdown and links for energy flow. While faster breakdown rates were associated with larger food webs, limited function maintained in mining-affected streams was sufficient to support primary consumers and small food webs.  相似文献   

14.
Apex predators and plant resources are both critical for maintaining diversity in biotic communities, but the indirect (‘cascading’) effects of top‐down and bottom‐up forces on diversity at different trophic levels are not well resolved in terrestrial systems. Manipulations of predators or resources can cause direct changes of diversity at one trophic level, which in turn can affect diversity at other trophic levels. The indirect diversity effects of resource and consumer variation should be strongest in aquatic systems, moderate in terrestrial systems, and weakest in decomposer food webs. We measured effects of top predators and plant resources on the diversity of endophytic animals in an understorey shrub Piper cenocladum (Piperaceae). Predators and resource availability had significant direct and indirect effects on the diversity of the endophytic animal community, but the effects were not interactive, nor were they consistent between living vs. detrital food webs. The addition of fourth trophic level beetle predators increased diversity of consumers supported by living plant tissue, whereas balanced plant resources (light and nutrients) increased the diversity of primary through tertiary consumers in the detrital resources food web. These results support the hypotheses that top‐down and bottom‐up diversity cascades occur in terrestrial systems, and that diversity is affected by different factors in living vs. detrital food webs.  相似文献   

15.
No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m−2 bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

16.
Hernandez AD  Sukhdeo MV 《Oecologia》2008,156(3):613-624
Relatively few published food webs have included parasites, and in this study we examined the animal community in a stream across eight contiguous seasons to test how inclusion of helminth parasites alters the topology or structure of the food web. Food webs constructed for each season and analyzed using common binary matrix measures show that species richness, linkage density, and the number of observed and possible links increased when parasites were included as individual species nodes. With parasite–parasite and predator–parasite links omitted, measures of community complexity, such as connectance (C), generally increased over multiple seasons. However, relative nestedness (n*) decreased when parasites were included, which may be a result of low resolution of basal resources inflating specialist-to-specialist links. Overall, adding parasites resulted in moderate changes in food web measures when compared to those of four other published food webs representing different ecosystems. In addition, including parasites in the food web revealed consistent pathways of energy flow, and the association of parasite life histories along these pathways suggest stable evolutionary groups of interacting species within the community. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Behavioural trophic cascades highlight the importance of indirect/risk effects in the maintenance of healthy trophic‐level links in complex ecosystems. However, there is limited understanding on how the loss of indirect top–down control can cascade through the food‐web to modify lower level predator–prey interactions. Using a reef fish food‐web, our study examines behavioural interactions among predators to assess how fear elicited by top‐predator cues (visual and chemical stimuli) can alter mesopredator behaviour and modify their interaction with resource prey. Under experimental conditions, the presence of any cue (visual, chemical, or both) from the top‐predator (coral trout Plectropomus leopardus) strongly restricted the distance swum, area explored and foraging activity of the mesopredator (dottyback Pseudochromis fuscus), while indirectly triggering a behavioural release of the resource prey (recruits of the damselfish Pomacentrus chrysurus). Interestingly, the presence of a large non‐predator species (thicklip wrasse Hemigymnus melapterus) also mediated the impact of the mesopredator on prey, as it provoked mesopredators to engage in an ‘inspection’ behaviour, while significantly reducing their feeding activity. Our study describes for the first time a three‐level behavioural cascade of coral reef fish and stresses the importance of indirect interactions in marine food‐webs.  相似文献   

18.
Food web topologies depict the community structure as distributions of feeding interactions across populations. Although the soil ecosystem provides important functions for aboveground ecosystems, data on complex soil food webs is notoriously scarce, most likely due to the difficulty of sampling and characterizing the system. To fill this gap we assembled the complex food webs of 48 forest soil communities. The food webs comprise 89 to 168 taxa and 729 to 3344 feeding interactions. The feeding links were established by combining several molecular methods (stable isotope, fatty acid and molecular gut content analyses) with feeding trials and literature data. First, we addressed whether soil food webs (n = 48) differ significantly from those of other ecosystem types (aquatic and terrestrial aboveground, n = 77) by comparing 22 food web parameters. We found that our soil food webs are characterized by many omnivorous and cannibalistic species, more trophic chains and intraguild‐predation motifs than other food webs and high average and maximum trophic levels. Despite this, we also found that soil food webs have a similar connectance as other ecosystems, but interestingly a higher link density and clustering coefficient. These differences in network structure to other ecosystem types may be a result of ecosystem specific constraints on hunting and feeding characteristics of the species that emerge as network parameters at the food‐web level. In a second analysis of land‐use effects, we found significant but only small differences of soil food web structure between different beech and coniferous forest types, which may be explained by generally strong selection effects of the soil that are independent of human land use. Overall, our study has unravelled some systematic structures of soil food‐webs, which extends our mechanistic understanding how environmental characteristics of the soil ecosystem determine patterns at the community level.  相似文献   

19.
Summary Some properties of community structure are explored using co-evolutionary theory. We consider mathematical models of food webs in which all species in a community adopt foraging behaviours and antipredator behaviours that maximize individual fitness. If the antipredator behaviour of a prey is effective against all its enemies, the number of prey—predator links in a food web must be less than the sum of the numbers of prey and predator species. However, if an increase in a prey's attention to one type of predator decreases its attention to another type of predator, there may be no limit on the number of predator species using a common set of prey species. Predator-specific defence allows a much more complex community structure than non-specific defence. Predator-specific defence more frequently allows a large niche overlap between predators than does non-specific defence. The high connectivity of some fish communities in Lake Tanganyika may be an example of this phenomenon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号