首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyrotropin causes a rapid and significant increase in the fluorescence polarization of DPH when this hydrophobic probe is incorporated into a strain of functioning rat thyroid cells (FRTL5). This increase is ligand-specific and is not related to cAMP production. The phenomenon seems to reflect the interaction of thyrotropin with the glycoprotein component of its membrane receptor, as suggested by experiments in which thyrotropin causes increases in DPH fluorescence polarization in liposomes embedded with this receptor component but not with gangliosides. A strain of nonfunctioning rat thyroid cells (FRT), exhibiting no reactivity with monoclonal antibodies to the glycoprotein component of the thyrotropin receptor, requires two orders of magnitude higher concentrations of thyrotropin to exhibit a comparable phenomenon.  相似文献   

2.
The two components of thyroid plasma membranes known to interact with thyrotropin, i.e., a glycoprotein with specific thyrotropin binding activity and the gangliosides of the thyroid membranes, are shown to segregate differently when membranes are solubilized with lithium diiodosalicylate. Individually examined, the interaction of each component with thyrotropin exhibits a different sensitivity to salts. The data suggest that the thyrotropin receptor on the thyroid membrane is a complex which is composed of both glycoprotein and ganglioside components and that its properties are derived from each component.  相似文献   

3.
The thyrotropin receptor is proposed to contain both a glycoprotein and a ganglioside component. Monoclonal antibodies have been developed against soluble thyroid TSH receptor preparations and using Graves' lymphocytes. These show that initial recognition of thyrotropin requires the glycoprotein component, but that monoclonal antibodies to this component block thyrotropin function (blocking antibodies) rather than mimic thyrotropin. Monoclonal antibodies which stimulate thyroid activity in cultured cell systems (cAMP increase) or mouse bioassays, all interact with gangliosides. Using monoclonal antibodies to the glycoprotein component of the thyrotropin receptor, we show that two protein bands, molecular weights 18,000-23,000 and 50,000-55,000, are precipitated from detergent-solubilized preparations. Using a crosslinking procedure with 125I-labeled thyrotropin, we show that thyrotropin binding is related to the disappearance of the 18,000-23,000 molecular weight band on sodium dodecylsulfate gels and the appearance of a 30,000-33,000 molecular weight thyrotropin-membrane component complex. Higher molecular weight thyrotropin-membrane complexes of 75,000-80,000 and 250,000 are visualized when binding studies are performed at pH 7.4 in physiologic medium; larger amounts of the 30,000-33,000 complex are evident at pH 6.0 in a low salt medium. It is thus proposed that the glycoprotein component of the thyrotropin receptor is composed of two subunits with apparent molecular weights of 18,000-23,000 and 50,000-55,000; that the 18,000-23,000 subunit interacts with thyrotropin; and that different receptor subunits can exist depending on in vitro binding conditions. Using monoclonal-stimulating antibodies or natural autoimmune IgG preparations from patients' sera, we show that stimulating antibodies exhibit species-specific binding to human thyroid ganglioside preparations. Individual components or determinants of the thyrotropin receptor structure with specific autoimmune immunoglobulins.  相似文献   

4.
Growth and function of well differentiated FRTL-5 thyroid cells depend on thyrotropin as its main regulatory hormone. We demonstrate here that stable transfection of FRTL-5 cells with the human thyrotropin receptor cDNA results in cellular transformation of these cells with altered cell shape and loss of contact inhibition. The transformed cells replicate in soft agar and form invasive tumors when cell suspensions are implanted onto nude mice. They have lost their thyrotropin dependent growth and their ability to concentrate iodide and synthesize thyroglobulin. But they still express the rat thyrotropin receptor mRNA and accumulate cAMP in response to thyrotropin stimulation. However, although the full length human thyrotropin receptor cDNA is integrated into their genome, transformed cells do not express the human thyrotropin receptor mRNA.  相似文献   

5.
The human thyrotropin receptor cDNA was transfected in CHO cells and individual clones were isolated. They were tested for their response to thyrotropin, forskolin and antibodies from a patient with high levels of thyroid stimulating antibodies. Several clones were characterized extensively with respect to membrane binding of labeled thyrotropin, cAMP accumulation in response to thyrotropin and kinetics of cAMP production. Data for three representative clones are presented. Receptor number as assessed by membrane binding of labeled thyrotropin, and cAMP production, measured in a thyrotropin response bioassay, are correlated. The Kd value for the human thyrotropin receptor expressed in CHO was estimated to be 50 pM.  相似文献   

6.
The thyrotropin receptor from bovine thyroid plasma membranes has been solubilized using lithium diiodosalicylate, and an assay to measure thyrotropin binding to the solubilized receptor has been developed. Both the solubilized thyrotropin receptor and the thyrotropin receptor on thyroid plasma membranes have effectively identical nonlinear Scatchard plots and negatively sloped Hill plots, i.e. both preparations have receptors which appear to exhibit a similar negatively cooperative relationship. Although the pH optimum of thyrotropin binding to the solubilized receptor is the same as that of the thyroid plasma membrane receptor, pH 6.0, the pH dependency curve of the solubilized receptor is slightly different in its outline. Thyrotropin binding to the solubilized receptor is less sensitive to salt inhibition than is binding to the thyroid plasma membrane receptor; however, optimal binding remains at 0 degrees. The relative affinities of thyrotropin and two glycoprotein hormones which can be considered structural analogs, luteinizing hormone and human chorionic gonadotropin, are 100:10:5, respectively, toward plasma membrane receptors, but 100:25:40 toward the solubilized receptors. The solubilized receptor preparation is heterogeneous in size in that it has binding components with molecular weights of 286,000, 160,000, 75,000, and 15,000 to 30,000. Tryptic digestion converts all three higher molecular weight components to the 15,000 to 30,000 molecular weight species, and the 15,000 to 30,000 molecular weight receptor component has all of the binding properties of the solubilized receptor preparation before tryptic digestion including an identical nonlinear Scatchard plot. It has the same size as and coelutes from Sephadex G-100 with a 15,000 to 30,000 molecular weight receptor released by tryptic digestion of bovine thyroid plasma membranes or tryptic digestion of bovine or dog thyroid cells in culture. The tryptic fragment of the solubilized receptor or preparations has been purified almost 250-fold by affinity chromatography on thyrotropin-Sepharose columns. The binding activity is lost when the solubilized thyrotropin receptor preparation is exposed to beads of neuraminidase-Sepharose or conconavalin A-Sepharose.  相似文献   

7.
Phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine interact with 125I-thyrotropin and inhibit its binding to thyroid plasma membranes; phosphatidylcholine is not similarly effective. The interaction has been monitored by column chromatography on Sephadex G-100 which shows, for example, that 125I-labeled thyrotropin forms an adduct with phosphatidylinositol but not with phosphatidylcholine. Formation of the 125I-labeled thyrotropin-phosphatidylinositol adduct is dependent on the phosphatidylinositol concentration but can be reversed by both unlabeled thyrotropin and excess membranes. The efficacy of the phospholipid interaction and the phospholipid inhibition of thyrotropin binding to thyroid membranes is paralleled by changes in fluorescence and fluorescence polarization imposed on the 5-dimethylamino-1-naphthalene sulfonate (dansyl) derivative of thyrotropin. These changes are reversed by unlabeled thyrotropin but not by prolactin, placental lactogen, or growth hormone; similar changes are not observed when phospholipids are incubated with dansylated growth hormone, prolactin, and placental lactogen. Monovalent potassium, sodium, and lithium salts neither prevent nor reverse the formation of the phospholipid-dansyl-thyrotropin adduct; these results contrast with the effects of the same salts on the formation of ganglioside adducts with dansyl-thyrotropin. Despite their ability to interact witw 125I-thyrotropin in solution, neither phosphatidylinositol, phosphatidylserine, nor phosphatidylethanolamine, when incorporated in a liposome, binds the 125I-labeled ligand. These same phospholipids have no effect on ganglioside binding of 125I-labeled thyrotropin when gangliosides are incorporated in a liposome. These phospholipids do, however, modulate the expression of the glycoprotein component of the thyrotropin receptor when it is imbedded in a liposome. The phosphatidylinositol in this case serves as a negative modulator, both by decreasing the incorporation of the glycoprotein component of the receptor into the liposome and by inhibiting the binding activity of the glycoprotein component which is incorporated. Speculation is offered as to a possible role of the phospholipids in the message transmission process which would be consistent with current studies demonstrating a direct interaction of acidic phospholipids with thyrotropin. The effect of phospholipids on liposomes containing the glycoprotein component of the thyrotropin receptor raises the possibility that phospholipids and, in particular, phosphatidylinositol, may also play a role in regulating the insertion and expression of this receptor component in thyroid plasma membranes.  相似文献   

8.
The thyroid-stimulating hormone (TSH; thyrotropin) receptor belongs to the glycoprotein hormone receptor subfamily of 7-transmembrane spanning receptors. TSH receptor (TSHR) is expressed mainly in thyroid follicular cells and is activated by TSH, which regulates the growth and function of thyroid follicular cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small-molecule agonists of the TSHR are available. To screen for novel TSHR agonists, the authors miniaturized a commercially available cell-based cyclic adenosine 3',5' monophosphate (cAMP) assay into a 1536-well plate format. This assay uses an HEK293 cell line stably transfected with the TSHR coupled to a cyclic nucleotide gated ion channel as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal homogeneous time-resolved fluorescence cAMP-based assay. Forty-nine compounds in several structural classes have been confirmed as the small-molecule TSHR agonists that will serve as a starting point for chemical optimization and studies of thyroid physiology in health and disease.  相似文献   

9.
The extracellular domain of the thyrotropin (TSH) receptor is the primary site with which TSH and receptor autoantibodies interact. Cysteines 494 or 569 in the 1st and 2nd exoplasmic loops, respectively, of the transmembrane domain of the TSH receptor are important in this process or in coupling ligand binding to signal generation. Thus, when either is mutated to serine, a receptor results which has no detectable TSH binding and no cAMP response to TSH or thyroid stimulating autoantibodies after transfection, despite the fact the mutant receptor is normally synthesized, processed, and integrated in the membrane, as evidenced by Western blotting using a TSH receptor-specific antibody. Additional site directed mutagenesis studies are performed in order to identify cysteine residues in the extracellular domain of the receptor which, with cysteines 494 and 569, are important for tertiary structure and receptor bioactivity.  相似文献   

10.
To examine the identity of binding sites for thyrotropin (TSH) and thyroid stimulating antibodies (TSAbs) associated with Graves' disease, we constructed eight human TSH receptor/rat LH-CG receptor chimeras. Substitution of amino acid residues 8-165 of the TSH receptor with the corresponding LH-CG receptor segment (Mc1 + 2) results in a chimera which retains high affinity TSH binding and the cAMP response to TSH but loses both the cAMP response to Graves' IgG and Graves' IgG inhibition of TSH binding. Two of three IgGs from idiopathic myxedema patients which contain thyroid stimulation blocking antibodies (TSBAbs) still, however, react with this chimera. Chimeras which substitute residues 90-165 (Mc2) and 261-370 (Mc4) retain the ability to interact with TSH, Graves' IgG, and idiopathic myxedema IgG. The data thus suggest that residues 8-165 contain an epitope specific for TSAbs and that TSH receptor determinants important for the activities of TSAbs and TSH are not identical. Further, binding sites for TSBAbs in idiopathic myxedema may be different from receptor binding sites for both Graves' IgG TSAb as well as TSH and may be different in individual patients.  相似文献   

11.
The changes in the characteristics of thyrotropin (TSH) binding to thyroid plasma membranes during the activation of cyclic AMP-dependent protein kinase in the membranes were studied. Preincubation of thyroid plasma membranes with TSH or cyclic AMP reduced the maximal binding capacity but increased the association rate for TSH binding. In double reciprocal analysis, a marked reduction of the total number of binding sites and association constant was observed in the membranes treated with cyclic AMP. These reductions were also observed in the membranes preincubated with buffer alone. The degree of these reductions, however, was greater in the membranes pretreated with cyclic AMP. During incubation of the membranes with buffer alone, cyclic AMP formation (activation of adenylate cyclase) was observed though the degree of the formation was lower than that induced by TSH. The results suggested that not only TSH receptor release from thyroid plasma membrane but also the modification of TSH binding activity in the membrane is produced by cyclic AMP-dependent protein kinase.  相似文献   

12.
To identify the site(s) on the thyrotropin (TSH) receptor that interacts with TSH or thyroid stimulating antibody (TSAb), we examined the effect of the synthetic TSH receptor peptide (termed N2 peptide, No. 35-50) on the cAMP accumulation induced by TSH or TSAb. Preincubation of bovine TSH with N2 peptide resulted in a significant and dose-dependent decrease in cAMP accumulation. This decrease was not observed when bovine TSH was preincubated with P1 peptide, which was used as a control (No. 398-417). In contrast, the N2 peptide did not affect TSAb activity in immunoglobulin fractions from three TSAb-positive patients with Graves' disease. P1 peptide also had no effect on TSAb activity. These results suggest that the N-terminal region of the TSH receptor is important for TSH action, and also that TSAb activity cannot be suppressed only by the application of the synthetic peptide corresponding to the N-terminal region.  相似文献   

13.
14.
BACKGROUND: Hereditary nonautoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor gene. Antithyroid treatment failed to control hyperthyroidism in most cases, so that primary thyroid ablation or 131I therapy is advocated as the preferred treatment of choice. PATIENT/METHODS: We describe a case of neonatal nonautoimmune hyperthyroidism treated with carbimazole. Molecular analysis revealed a new heterozygous point mutation (A428V) in the TSH receptor (TSHR) gene. RESULT: Antithyroid treatment was successful in controlling hyperthyroidism for the first 5.9 years of age. CONCLUSION: We conclude that carbimazole therapy is effective in treating nonautoimmune hyperthyroidism. It may be an alternative to thyroidectomy or radioiodine treatment.  相似文献   

15.
A strongly fluorescent 5-dimethylamino-1-naphthalene sulfonate (dansyl) derivative of bovine thyrotropin has been prepared. The dye-conjugated hormone is bioactive and shares, essentially unchanged, the membrane binding and adenylate cyclase stimulatory activities of the native hormone. Binding of 125I-labeled dansyl-thyrotropin to thyroid plasma membranes is sensitive to inhibition by gangliosides and, as is the case for the binding of 125I-thyrotropin, galactosyl-N-acetylgalactosaminyl[N-acetylneuraminyl-N-acetylneuraminyl]-galactosylglucosylceramide (GDIb) is the most potent binding inhibitor. Gangliosides interact with dansyl-thyrotropin, causing a large increase of the quantum yield and a 5- to 10-nm blue shift of the emission maximum of the hormone-bound naphthalene chromophore; gangliosides cause no change in the fluorescent properties of the free dye. The fluorescence enhancement caused by gangliosides can be specifically reversed by unlabeled thyrotropin. The effect of gangliosides on dansyl-thyrotropin fluorescence is strongly salt-dependent; salts cannot, however, reverse the formation of the dansyl-thyrotropin.ganglioside complex once it has formed. The salt data suggest that the association of the ganglioside with dansyl-thyrotropin is dominated by electrostatic interactions, but that salt-independent, short range interactions, most likely hydrophobic, dominate the dissociation of the dansyl-thyrotropin-ganglioside adduct. Sucrose gradient centrifugation, ultracentrifugation, and fluorescence polarization data indicate that the gangliosides are micellar in nature under the conditions of these experiments. Acid titration of dansyl-thyrotropin causes a marked quenching of dansyl fluorescence which in part reflects dissociation of the hormone into its constituent alpha and beta subunits. In the presence of GDIb, but not N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosylceramide (GDIa), pH-dependent quenching and subunit dissociation are essentially eliminated. Circular dichroism results and fluorescence polarization studies support the interpretation that the ganglioside interaction causes a conformational change in the thyrotropin molecule. The acid titration data together with differences in the ability of gangliosides to influence the tyrosine fluorescence of the thyrotropin molecule indicate that different gangliosides induce different conformational perturbations in the thyrotropin molecule.  相似文献   

16.
An 11-residue oligopeptide, P-195, was synthesized to match human thyrotropin (TSH) receptor structure from No. 333 to 343 of amino acid sequence. Preincubation of 5 Graves' IgGs with P-195 up to 10 micrograms resulted in dose-dependent reductions of thyroid stimulating antibody (TSAb) activity. [125I] labeled P-195 was found to bind Graves' IgG. The bound radioactivity correlated significantly with their TSAb activity (N = 25, r = 0.587, p less than 0.01). A peptide having a completely reverse sequence as P-195 did not show such biological activity. The peptide did not affect TSH and thyrotropin binding inhibitor immunoglobulin (TBII) on their receptor binding nor biological activities. P-195 was concluded to have a part of TSAb binding sites.  相似文献   

17.
FRTL-5 rat thyroid cells were either surface-labeled with 125I or biosynthetically labeled with [3H]N-acetylglucosamine, solubilized by lithium diiodosalicylate and immunoprecipitated after sequential exposure to bovine thyrotropin and anti-bovine thyrotropin. Autoradiography of polyacrylamide gels run under denaturing conditions and in the presence of a reducing agent revealed two prominent bands with approximate molecular weights of 66-70 kDa and 47 kDa. Immunoprecipitation of the same radiolabeled and solubilized membrane preparations with a Graves' disease IgG having thyroid stimulating but no thyrotropin-binding inhibiting activity revealed only one major band, migrating near the 47 kDa component reactive with thyrotropin. No bands were immunoprecipitated in control incubations using normal human IgG or substituting radiolabeled, solubilized membranes from a rat thyroid cell line with no thyrotropin receptor activity. Thin layer chromatography of Folch extracts of the [3H]-N-acetylglucosamine-labeled immunoprecipitates obtained by either procedure indicated that a specific thyroid ganglioside was coprecipitated with the immunoprecipitated proteins in both cases.  相似文献   

18.
《Endocrine practice》2020,26(1):97-106
Objective: Antibodies (Abs) to the thyrotropin (TSH) receptor (TSH-R) play an important role in the pathogenesis of autoimmune thyroid disease (AITD). We define the complex terminology that has arisen to describe TSH-R-Abs, review the mechanisms of action of the various types of TSH-R-Abs, and discuss significant advances that have been made in the development of clinically useful TSH-RAb assays.Methods: Literature review and discussion.Results: TSH-R-Abs may mimic or block the action of TSH or be functionally neutral. Stimulating TSH-R-Abs are specific biomarkers for Graves disease (GD) and responsible for many of its clinical manifestations. TSH-R-Abs may also be found in patients with Hashimoto thyroiditis in whom they may contribute to the hypothyroidism of the disease. Measurement of TSH-R-Abs in general, and functional Abs in particular, is recommended for the rapid diagnosis of GD, differential diagnosis and management of patients with AITD, especially during pregnancy, and in AITD patients with extrathyroidal manifestations such as orbitopathy. Measurement of TSH-R-Abs can be done with either immunoassays that detect specific binding of Abs to the TSH-R or cell-based bioassays that also provide information on their functional activity and potency. Application of molecular cloning techniques has led to significant advances in methodology that have enabled the development of clinically useful bioassays. When ordering TSH-R-Ab, clinicians should be aware of the different tests available and how to interpret results based on which assay is performed. The availability of an international standard and continued improvement in bioassays will help promote their routine performance by clinical laboratories and provide the most clinically useful TSH-R-Ab results.Conclusion: Measurement of TSH-R-Abs in general, and functional (especially stimulating) Abs in particular, is recommended for the rapid diagnosis, differential diagnosis, and management of patients with Graves hyperthyroidism, related thyroid eye disease, during pregnancy, as well as in Hashimoto thyroiditis patients with extra-thyroidal manifestations and/or thyroid-binding inhibiting immunoglobulin positivity.Abbreviations: Ab = antibody; AITD = autoimmune thyroid disease; ATD = antithyroid drug; cAMP = cyclic adenosine 3′,5′-monophosphate; ELISA = enzyme-linked immunosorbent assay; GD = Graves disease; GO = Graves orbitopathy; HT = Hashimoto thyroiditis; MAb = monoclonal antibody; TBAb = thyrotropin receptor blocking antibody; TBII = thyroid-binding inhibiting immunoglobulin; TSAb = thyrotropin receptor–stimulating antibody; TSB-Ab or TRBAb = thyrotropin receptor–stimulating blocking antibody; TSH = thyrotropin; TSH-R = thyrotropin receptor  相似文献   

19.
Dog, human, and bovine thyroid cells in culture have been shown to develop follicle-like structures when cells are cultured in conditions of confluency and when cells are incubated in the presence of bovine thyrotropin or N6,O2'-dibutyryl cyclic adenosine 3':5'-monophosphate during the first 24 to 48 hours after trypsinization. If thyrotropin is added 48 hours after trypsinization, these cells do not form follicle-like structures but remain as a monolayer culture. Although thyroid cells which grow as a monolayer have a thyrotropin receptor on their plasma membranes with the same in vitro binding properties as the thyrotropin receptor on the plasma membranes of the follicle-forming thyroid cells, there is a 1- to 2-fold greater number of receptors per mg of membrane protein when follicle-forming and monolayer cultures are compared...  相似文献   

20.
A Balb/c mouse was subjected to genetic immunization with a cDNA construct encoding the human thyrotropin receptor (TSHr). The immune response of the mouse resulted in the production of immunoglobulins recognizing the TSHr in three different assays: (1) flow immunocytometry (FACS) with CHO cells expressing the receptor; (2) receptor-dependent stimulation of cAMP production in the same cell line; and (3) competition with labeled TSH for binding to the receptor. One thousand hybridomas were generated from the spleen of the mouse and their supernatants were screened. A single monoclonal, IRI-SAb1, scored positive in all three assays and was studied further. It stimulated 13-fold cAMP production in TSHr-expressing CHO cells, with an EC50 in the low nanomolar range. When compared with bovine TSH, IRI-SAb1 behaved as a partial agonist. Contrary to the expectation from the characteristic of autoantibodies of Graves' patients, IRI-SAb1 recognized a linear epitope, which was localized in a segment encompassing the first 281 residues of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号