首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
C C Felder  A L Ma  B R Conklin 《FEBS letters》1989,245(1-2):75-79
Reverse transformation was induced in Chinese hamster ovary (CHO) cells transfected with and stably expressing the m5 subtype of the muscarinic acetylcholine receptor when stimulated with the muscarinic agonist, carbachol. Atropine, a muscarinic antagonist, blocked the carbachol-stimulated reverse transformation. CHO cells not transfected with the muscarinic receptor did not change with added carbachol. PMA induced reverse transformation without increasing cAMP accumulation in CHO cells. Carbachol, prostaglandin E2, and cholecystokinin increased cAMP accumulation but only carbachol caused reverse transformation. Carbachol-stimulated cAMP accumulation occurred at a higher concentration (EC50 10 microM) than did carbachol-stimulated reverse transformation (EC50 63 nM). Muscarinic m5 acetylcholine receptor transfected into CHO cells can induce reverse transformation which may be independent of cAMP.  相似文献   

3.
We have assessed the effects of endothelin-1 (ET-1) on transmembrane signaling in adult rat ventricular myocytes. ET-1 stimulates phosphoinositide hydrolysis with an EC50 of 0.3-0.8 nM. This stimulation is linear for up to 30 min in the presence of a protease inhibitor, is additive with the effects of other stimulators of phosphoinositide hydrolysis, is not inhibited by the Ca2+ entry blocker, nifedipine, and is insensitive to pertussis toxin. ET-1 also reduces cyclic AMP production in myocytes in response to isoproterenol and forskolin (EC50, 1 nM). This cyclic AMP-lowering effect of ET-1 is sensitive to pertussis toxin, can be demonstrated directly in assays of adenylate cyclase activity of myocyte membranes, and seems to be mediated by Gi. These data indicate that the effects of endothelin on adult cardiac myocytes involve multiple signaling pathways, including enhanced activity of the inositol phosphate pathway and a decrease in cyclic AMP-mediated responses, neither of which seems likely to account for the positive contractile effects of endothelin.  相似文献   

4.
We describe the reconstitution using purified proteins of the m1 muscarinic cholinergic pathway that activates phosphatidylinositol 4,5-bisphosphate-specific phospholipase C via the G protein Gq/11. Recombinant m1 muscarinic receptor was co-reconstituted in lipid vesicles with either hepatic Gq/11 or with cerebral alpha q/11 and beta gamma subunits. The rate of [35S]GTP gamma S binding to the reconstituted vesicles was stimulated 20-50-fold by agonist. Maximal receptor-catalyzed binding was 7 mol of GTP gamma S bound per mol of receptor. The m2 muscarinic receptor was a poor activator of Gq/11. The binding of [alpha-32P]GTP to [gamma-32P]GTP to m1/Gq/11 vesicles indicated that the receptor could maintain up to 40% of the total coupled Gq/11 in the GTP bound state. The rate of hydrolysis of bound GTP, 0.8 min-1, is consistent with the rate predicted from the GTP binding data but is 3-5-fold lower than rates reported for other trimeric G proteins. Agonist-stimulated photo-affinity labeling with gamma-(4-azidoanilido)-[alpha-32P]GTP indicated that the receptor catalyzed binding to both alpha q and alpha 11 with about equal efficiency. Receptor-catalyzed activation of Gq/11 by GTP gamma S, measured as the ability to activate purified phospholipase C-beta 1, paralleled receptor-catalyzed [35S]GTP gamma S binding. Co-reconstitution of receptor, Gq/11, and phospholipase C-beta 1 restored GTP gamma S-dependent carbachol-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate. The m1 receptor, Gq/11, and phospholipase C-beta 1 are thus sufficient to initiate the hormonal inositol trisphosphate/diacylglycerol signaling pathway without additional proteins.  相似文献   

5.
《Journal of Physiology》1998,92(3-4):269-274
Scanning mutagenesis of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor has revealed a highly-differentiated α-helical structure. Lipid-facing residues are distinguished from a patch of residues which selectively stabilise the ground state of the receptor, and from a band of amino acids extending the full length of the helix, which contribute to the active agonist-receptor-G protein complex. The most important residues are strongly conserved in the GPCR superfamily.  相似文献   

6.
Rat M3 mAChR subtype was stably expressed in RAT 1 cells. Investigation of the pharmacological and biochemical properties of the cloned M3 receptors revealed that they mediate phosphoinositide hydrolysis but not adenylate cyclase inhibition. The similarities and differences between the properties of cloned rat M1 and M3 receptors are discussed.  相似文献   

7.
The effects of angiotensin II (A II) on adenylate cyclase activities in membranes of the zona glomerulosa (the capsular fraction) and the zona fasciculata (the decapsulated fraction) from rat adrenocortical glands were investigated. A time- and GTP-dependent stimulation by A II of adenylate cyclase activity was observed in the capsular fraction but not in the decapsulated fraction. The activation of adenylate cyclase by ACTH and A II was additive. Stimulation by A II was inhibited by an angiotensin antagonist, DD-3487 (DD). Moreover, the addition of a prostaglandin antagonist, a mixture of polyesters of polyphloretin phosphate (PPP) and an inhibitor of prostaglandin synthesis, indomethacin, was effective in inhibiting A II-induced stimulation of the capsular adenylate cyclase activity, suggesting that the activation of A II receptors located on the capsular membrane leads to the release of prostaglandins, which in turn stimulates the adenylate cyclase.  相似文献   

8.
W Tsai  A D Morielli    E G Peralta 《The EMBO journal》1997,16(15):4597-4605
Intracellular tyrosine kinases link the G protein-coupled m1 muscarinic acetylcholine receptor (mAChR) to multiple cellular responses. However, the mechanisms by which m1 mAChRs stimulate tyrosine kinase activity and the identity of the kinases within particular signaling pathways remain largely unknown. We show that the epidermal growth factor receptor (EGFR), a single transmembrane receptor tyrosine kinase, becomes catalytically active and dimerized through an m1 mAChR-regulated pathway that requires protein kinase C, but is independent of EGF. Finally, we demonstrate that transactivation of the EGFR plays a major role in a pathway linking m1 mAChRs to modulation of the Kv1.2 potassium channel. These results demonstrate a ligand-independent mechanism of EGFR transactivation by m1 mAChRs and reveal a novel role for these growth factor receptors in the regulation of ion channels by G protein-coupled receptors.  相似文献   

9.
Smooth muscle of guinea-pig taenia caecum was desensitized by treatment with 10(-4)M carbachol or 10(-4)M histamine for 30 min in Ca-free solution containing 2mM EGTA. Phosphatidylinositol turnover stimulated by carbachol was not reduced by desensitization with either carbachol or histamine, while the turnover stimulated by histamine was reduced by desensitization with histamine, but not with carbachol. These results are consistent with our previous report (1) that heterologous desensitization induced by carbachol occurs at intracellular Ca stores and homologous desensitization by histamine occurs at H1 receptors.  相似文献   

10.
11.
To investigate the pharmacological effect of a novel compound YM796, we performed radioligand binding experiments and correlative biochemical experiments using the transfected murine fibroblast B82 cells which expressed the m1 and m2 muscarinic receptor genes (cloned cell lines designated as LK3-3 and M2LKB2-2, respectively). [3H](-)methyl-3-quinuclidinyl benzilate [( 3H](-)MQNB) binding in these transfected cell lines was inhibited by different optical isomers of YM796 and other muscarinic drugs, atropine, pirenzepine, AF-DX 116, as well as selected agonists. (-)YM796, (+)YM796 and (+/-)YM796 inhibited [3H](-)MQNB binding in LK3-3 cells with Ki values of 16.4 microM, 30.1 microM and 21.8 microM and in M2LKB2-2 cells with Ki values of 52.0 microM, 108 microM and 77.1 microM, respectively. From functional assays we found the two isomers, (-)YM796 and (+)YM796 had different intrinsic activities for the M1 and M2 muscarinic receptors. (-)YM796 revealed agonistic activity: stimulation of [3H]IP1 accumulation in LK3-3 cells with an EC50 value of 26.5 microM, which was less efficacious (the Emax value was 5.6 times basal) than carbachol, a full agonist (the Emax value was 17.2 times basal). Interestingly, (-)YM796 did not show significant inhibition of cAMP formation in M2LKB2-2 cells except at extremely high concentrations (greater than 1mM). (+)YM796 exhibited no significant efficacy for the M1 and M2 muscarinic receptors. These results suggest that (-)YM796 represents a muscarinic partial agonist with functional selectivity for the M1 muscarinic receptors whereas (+)YM796 shows no efficacy for either M1 or M2 muscarinic receptors in these transfected cells.  相似文献   

12.
13.
The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins.  相似文献   

14.
15.
16.
We have demonstrated previously that pretreatment of GH3 pituitary cells with muscarinic agonists may induce a higher cAMP formation in response to vasoactive intestinal peptide (VIP) or forskolin. In the present study, we further examined the adenylate cyclase (AC) that may be involved. We found that carbachol-pretreatment enhanced both VIP- and forskolin-activated AC activities. The addition of calcium ions to the incubation buffer diminished this enhancing effect. Carbachol was found to induce a decrease in intracellular calcium concentration [Ca2+]i by inhibiting calcium influx through L-type Ca2+ channels. However, the incubation of cells in Ca(2+)-free buffer or in the presence of L-type Ca2+ channel blockers had no influence on forskolin-stimulated cAMP formation, although both treatments induced decreases in [Ca2+]i as carbachol did. On the other hand, incubation in the presence of LaCl3 at a low concentration not being able to enter cells, forskolin-stimulated cAMP formation as well as the enhancing effect of carbachol-pretreatment on this response, were both suppressed. Similar phenomena were observed when membrane-bound AC activities were measured in the presence of LaCl3. Taken together, these results seem to suggest that pretreatment of GH3 cells with muscarinic receptor agonist may activate a Ca(2+)-inhibitable AC for a higher stimulated response. Low intracellular calcium concentrations are essential but not sufficient for this effect.  相似文献   

17.
R A Shapiro  N M Nathanson 《Biochemistry》1989,28(22):8946-8950
Deletions have been constructed in the putative third cytoplasmic loop of the mouse m1 muscarinic acetylcholine receptor (mAChR) gene, and the effects of these mutations on mAChR coupling to phosphoinositide metabolism and agonist-induced down-regulation have been examined following expression in Y1 adrenal carcinoma cells. Deletion of up to 123 of the 156 amino acids in this loop has no effect on antagonist or agonist binding, or on coupling to stimulation of phosphoinositide metabolism. These results suggest that the membrane proximal portions of this loop are involved in determining the specificity of functional coupling of the receptor. Deletion of 75% of the loop has no effect on short-term agonist-induced internalization but does cause a significant decrease in the magnitude of agonist-induced down-regulation of receptor number. Thus, this portion of the receptor may be involved in mediating the response to long-term agonist exposure.  相似文献   

18.
We have studied the effect of parathyroid hormone (PTH) on adenylate cyclase of microvessels isolated from rat cerebral cortex. Native bovine (b) PTH-(1–84), the synthetic amino-terminal fragment bPTH-(1–34) and the synthetic analog [Nle8, Nle18, Tyr34]-bPTH- (1–34) amide stimulated adenylate cyclase in a dose-dependent manner with apparent ED50 values of 16 nM, 6.3 nM and 15 nM respectively. The stimulation by bPTH was greatly enhanced by guanosine triphosphate. The PTH antagonist, [Nle8, Nle18, Tyr34]-bPTH-(3–34) amide inhibited the action of bPTH-(1–84) and bPTH-(1–34). In summary, PTH stimulated adenylate cyclase in rat cerebral microvessels in a very similar manner to its stimulation in the renal cortex.  相似文献   

19.
Integrin-associated protein (IAP/CD47) augments the function of alpha2beta1 integrin in smooth muscle cells (SMC), resulting in enhanced chemotaxis toward soluble collagen (Wang, X-Q., and W.A. Frazier. 1998. Mol. Biol. Cell. 9:865). IAP-deficient SMC derived from IAP(-/-) animals did not migrate in response to 4N1K (KRFYVVMWKK), a peptide agonist of IAP derived from the COOH-terminal domain of thrombospondin-1 (TSP1). When normal SMC were preincubated with 4N1K or an anti-alpha2beta1 function-stimulating antibody, cell migration to soluble collagen was significantly enhanced. 4N1K-induced chemotaxis was blocked by treatment of SMC with pertussis toxin indicating that IAP acts through Gi. In agreement with this, 4N1K evoked a rapid decrease in cAMP levels which was intensified in the presence of collagen, and forskolin and 8-Br-cAMP both inhibited SMC migration stimulated via IAP. 4N1K strongly inhibited extracellular regulated kinase (ERK) activation in SMC attaching to collagen and reduced basal ERK activity in suspended SMC. Pertussis toxin treatment of SMC significantly activated ERK, suggesting that an inhibitory input was alleviated. Inhibition of ERK activity by (a) the MAP kinase kinase (MEK) inhibitor, PD98059, (b) antisense oligonucleotide depletion of ERK, and (c) expression of mitogen-activated protein (MAP) kinase phosphatase-1 in SMC all led to increased migration to collagen, 4N1K, or 4N1K plus collagen. Thus, IAP stimulates alpha2beta1 integrin-mediated SMC migration via Gi-mediated inhibition of ERK activity and suppression of cyclic AMP levels. Both of these signaling pathways could directly modulate the state of the integrin as well as impact downstream components of the cell motility apparatus.  相似文献   

20.
Forskolin is a potent activator of the cyclic AMP-generating system in many tissues. In dog thyroid slices, the enhancement of cyclic AMP level was rapid, sustained in the presence of forskolin, but easily reversible after its withdrawal. Contrary to TSH, forskolin induced little apparent desensitization. Forskolin potentiated the effects of TSH, PGE1 and cholera toxin. However, the forskolin-induced cyclic AMP accumulation was still sensitive to inhibitors of dog thyroid adenylate cyclase such as iodide, norepinephrine and adenosine. As fluoride, but contrary to TSH and PGE1, forskolin stimulated adenylate cyclase in a medium where Mg2+ was replaced by Mn2+. This suggests that in thyroid, as in other tissues, forskolin acts beyond the receptor level but, as it potentiates hormone action and does not impair modulation by inhibitors, it may interact with the nucleotide-binding regulatory proteins. Forskolin mimicked the effect of TSH on iodide organification and secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号