首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutamate is the major excitatory amino acid of the mammalian brain but can be toxic to neurones if its extracellular levels are not tightly controlled. Astrocytes have a key role in the protection of neurones from glutamate toxicity, through regulation of extracellular glutamate levels via glutamate transporters and metabolic and antioxidant support. In this study, we report that cultures of rat astrocytes incubated with high extracellular glutamate (5 mM) exhibit a twofold increase in the extracellular concentration of the tripeptide antioxidant glutathione (GSH) over 4 h. Incubation with glutamate did not result in an increased release of lactate dehydrogenase, indicating that the rise in GSH was not because of membrane damage and leakage of intracellular pools. Glutamate-induced increase in extracellular GSH was also independent of de novo GSH synthesis, activation of NMDA and non-NMDA glutamate receptors or inhibition of extracellular GSH breakdown. Dose–response curves indicate that GSH release from rat astrocytes is significantly stimulated even at 0.1 mM glutamate. The ability of astrocytes to increase GSH release in the presence of extracellular glutamate could be an important neuroprotective mechanism enabling neurones to maintain levels of the key antioxidant, GSH, under conditions of glutamate toxicity.  相似文献   

2.
Primary culture rat astrocytes exposed to the long acting nitric oxide donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) for 24 h approximately double their concentration of glutathione (GSH) and show no sign of cell death. In contrast, GSH was depleted by 48%, and significant loss of mitochondrial respiratory chain complex activity and cell death were observed in primary culture rat neurones subjected to DETA-NO for 18 h. Northern blot analysis suggested that mRNA amounts of both subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, were elevated in astrocytes following nitric oxide (NO) exposure. This correlated with an increase in astrocytic GCL activity. Neurones on the other hand did not exhibit increased GCL activity when exposed to NO. In addition, the rate of GSH efflux was doubled and gamma-glutamyltranspeptidase (gamma-GT) activity was increased by 42% in astrocytes treated with NO for 24 h. These results suggest that astrocytes, but not neurones, up-regulate GSH synthesis as a defence mechanism against excess NO. It is possible that the increased rate of GSH release and activity of gamma-GT in astrocytes may have important implications for neuroprotection in vivo by optimizing the supply of GSH precursors to neurones in close proximity.  相似文献   

3.
Glutathione (GSH) is one of the major antioxidants in the brain. GSH is secreted by astrocytes and this extracellular GSH is used by neurones to maintain and increase their intracellular GSH levels. For efficient GSH trafficking between astrocytes and neurones, GSH needs to be maintained in the reduced form. In model systems, GSH trafficking has been shown to be essential for neuroprotection against a variety of stress conditions. Previously we and others have shown that GSH and thiols are unstable in cell culture media and are easily oxidised. In the present study it is shown that nanomolar concentrations of copper (II) ions can cause decay of GSH in cell culture media. Increased free or redox active copper has been implicated in a variety of diseases and degradation of extracellular GSH is a possible mechanism by which it exerts its harmful effects. Rat astrocytes, a human astrocytoma cell line and astrocyte-conditioned media, in the absence of cells, are able to retard this copper-catalysed decay of GSH and maintain GSH in its reduced form. The protective effect of astrocytes appears to be a combination of copper removing and antioxidant mechanisms. The importance of these protective mechanisms is discussed with regards to neurodegenerative diseases.  相似文献   

4.
Glutathione pathways in the brain   总被引:9,自引:0,他引:9  
The antioxidant glutathione (GSH) is essential for the cellular detoxification of reactive oxygen species in brain cells. A compromised GSH system in the brain has been connected with the oxidative stress occuring in neurological diseases. Recent data demonstrate that besides intracellular functions GSH has also important extracellular functions in brain. In this respect astrocytes appear to play a key role in the GSH metabolism of the brain, since astroglial GSH export is essential for providing GSH precursors to neurons. Of the different brain cell types studied in vitro only astrocytes release substantial amounts of GSH. In addition, during oxidative stress astrocytes efficiently export glutathione disulfide (GSSG). The multidrug resistance protein 1 participates in both the export of GSH and GSSG from astrocytes. This review focuses on recent results on the export of GSH and GSSG from brain cells as well as on the functions of extracellular GSH in the brain. In addition, implications of disturbed GSH pathways in brain for neurodegenerative diseases will be discussed.  相似文献   

5.
6.
Under pathological conditions such as ischemia/reperfusion, a large amount of superoxide anion (O(2) (-)) is produced and released in brain. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD, known to be excreted outside cells and bound to extracellular matrix, should play a role to detoxify O(2) (-) in extracellular space; however, a little is known about EC-SOD in brain. In order to evaluate the SOD activity in extracellular space of CNS as direct as possible, we attempted to measure the cell-surface SOD activity on primary cultured rat brain cells by the inhibition of color development of a water-soluble tetrazolium due to O(2) (-) generation by xanthine oxidase/hypoxanthine added into extracellular medium of intact cells. The cell-surface SOD activity on cultured neuron and microglia was below the detection limit; however, that on cultured astrocyte was high enough to measure. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected in the three types of the cells examined; however, the semi-quantitative analysis revealed that the level of EC-SOD mRNA in astrocytes was significantly higher than that in neurons and microglia. When astrocytes were stimulated with lipopolysaccharide (LPS) for 12-24?h, the cell-surface SOD activity decreased to a half, whereas the activity recovered after 36-48?h. The decrease in the activity was dependent on the LPS concentration. On the other hand, the SOD activity in the medium increased by the LPS-stimulation in a dose dependent manner; suggesting that the SOD protein localized on cell-surface, probably EC-SOD, was released into the medium. These results suggest that EC-SOD of astrocyte play a role for detoxification of extracellular O(2) (-) and the regulation of EC-SOD in astrocytes may contribute to the defensive mechanism against oxidative stress in brain.  相似文献   

7.
To investigate the effects of dopamine (DA) on the release of glutathione (GSH) from astrocytes, we used astroglia-rich primary cultures from the brains of newborn rats. In the absence of DA, GSH accumulated in the medium of these cultures with a constant rate. In contrast, during incubation of the cells with 50 micro m DA extracellular GSH was not detectable anymore. This disappearance of extracellular GSH was prevented by superoxide dismutase, indicating that DA does not affect GSH release but rather reacts with the released GSH in a superoxide-dependent reaction. Incubation of astroglial cultures with 0.5 and 1 mm DA established almost constant extracellular concentrations of H2O2 of 5 microm and 15 microm, respectively. Under these conditions astroglial cultures release glutathione disulphide (GSSG). This GSSG export was blocked by catalase and by MK571, an inhibitor of the multidrug resistance protein 1. The effects of DA on the extracellular accumulations of GSH and GSSG were not modulated by inhibitors of DA receptors, DA transport, and monoamine oxidases. The other catecholamines adrenaline and noradrenaline showed similar effects on the accumulation of GSH and GSSG in the medium compared with those obtained for DA. In conclusion, the data presented demonstrate that DA affects astroglial GSH metabolism by two mechanisms: (i) directly by chemical reaction with extracellular GSH, and (ii) indirectly by generation of hydrogen peroxide that leads to the efflux of GSSG from astroglial cells. These observations are discussed in the context of the brain's GSH metabolism in Parkinson's disease.  相似文献   

8.
Altered glial function in the substantia nigra in Parkinson's disease may lead to the release of toxic substances that cause dopaminergic cell death or increase neuronal vulnerability to neurotoxins. To investigate this concept, we examined the effects of subjecting astrocytes to lipopolysaccharide (LPS)-induced activation alone or combined with L-buthionine-[S,R]-sulfoximine-induced glutathione depletion or inhibition of complex I activity by 1-methyl-4-phenylpyridinium (MPP+) on the viability of primary ventral mesencephalic neurones or susceptibility to MPP+ and 6-hydroxydopamine (6-OHDA) in co-cultures. LPS-activated astrocytes caused neuronal death in a time-dependent manner, but glutathione-depleted or complex I-inhibited astrocytes had no effect on neuronal viability. The neurotoxicity of LPS-activated astrocytes was inhibited by the inducible nitric oxide synthase inhibitor aminoguanidine, by the nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and by reduced glutathione (GSH). MPP+-induced neuronal death was greater in ventral mesencephalic cultures previously cultured with LPS-activated, glutathione-depleted, or complex I-inhibited astrocytes compared with co-cultures containing normal astrocytes. The increased neuronal susceptibility to MPP+ caused by LPS-activated or complex I-inhibited astrocytes and glutathione-depleted astrocytes was inhibited by the NMDA/glutamate antagonist MK-801 and by GSH, respectively. Neuronal death caused by 6-OHDA was increased in ventral mesencephalic cultures previously cultured with LPS-activated and glutathione-depleted, but not complex I-inhibited astrocytes, compared with co-cultures containing normal astrocytes. Treatment of co-cultures with GSH prevented the increased neuronal susceptibility to 6-OHDA. These findings suggest that glial dysfunction may cause neuronal death or render neurones susceptible to toxic insults via a mechanism involving the release of free radicals and glutamate. Such a mechanism may play a role in the development or progression of nigrostriatal degeneration in Parkinson's disease.  相似文献   

9.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

10.
It is well known that the presence of albumin within the brain and the CSF is developmentally regulated. However, the physiological relevance of this phenomenon is not well established. We have previously shown that albumin specifically increases the flux of glucose and lactate through the pyruvate dehydrogenase reaction in astrocytes. Here we show that, in neurones, albumin also increases the oxidation of glucose and lactate through the pyruvate dehydrogenase-catalysed reaction, the final purpose of this being the synthesis of glutamate. Thus, in neurones, the presence of albumin strongly increased the synthesis and release of glutamate to the extracellular medium. Our results also suggest that glutamate release caused by albumin is designed to promote neuronal survival. Thus, under culture conditions in which neurones die by apoptosis, the presence of albumin promoted neuronal survival and maintained the differentiation programme of these cells, as judged by the expression of the axonal protein, GAP-43. The effect of albumin on neuronal survival was counteracted by the presence of DNQX, an antagonist of non-NMDA-glutamate receptors, suggesting that the glutamate synthesized and released due to the presence of albumin is responsible for neuronal survival. In addition, the effect of albumin seemed to depend on the activity of the NGF receptor, TrkA, suggesting that the glutamate synthesized and released due to the presence of albumin promotes neuronal survival through the activity of TrkA.  相似文献   

11.
Astrocytes play an important role in the glutathione (GSH) metabolism of the brain. To test for an involvement of multidrug resistance protein (Mrp) 1 and 5 in the release of GSH and glutathione disulfide (GSSG) from astrocytes, we used astrocyte cultures from wild-type, Mrp1-deficient [Mrp1(-/-)] and Mrp5-deficient [Mrp5(-/-)] mice. During incubation of wild-type or Mrp5(-/-) astrocytes, GSH accumulated in the medium at a rate of about 3 nmol/(h.mg), whereas the export of GSH from Mrp1(-/-) astrocytes was only one-third of that. In addition, Mrp1(-/-) astrocytes had a 50% higher specific GSH content than wild-type or Mrp5(-/-) cells. The presence of 50 microm of the Mrp inhibitor MK571 inhibited the rate of GSH release from wild-type and Mrp5(-/-) astrocytes by 60%, but stimulated at the low concentration of 1 microm GSH release by 40%. In contrast, both concentrations of MK571 did not affect GSH export from Mrp1(-/-) astrocytes. Moreover, in contrast to wild-type and Mrp5(-/-) cells, GSSG export during H(2)O(2) stress was not observed for Mrp1(-/-) astrocytes. These data demonstrate that in astrocytes Mrp1 mediates 60% of the GSH export, that Mrp1 is exclusively responsible for GSSG export and that Mrp5 does not contribute to these transport processes.  相似文献   

12.
Astrocytes play an important role in neuronal development through the release of soluble factors that affect neuronal maturation. Shotgun proteomics followed by gene ontology analysis was used in this study to identify proteins present in the conditioned medium of primary rat astrocytes. One hundred and thirty three secreted proteins were identified, the majority of which were never before reported to be produced by astrocytes. Extracellular proteins were classified based on their biological and molecular functions; most of the identified proteins were involved in neuronal development. Semi-quantitative proteomic analysis was carried out to identify changes in the levels of proteins released by astrocytes after stimulation with the cholinergic agonist carbachol, as we have previously reported that carbachol-treated astrocytes elicit neuritogenesis in hippocampal neurons through the release of soluble factors. Carbachol up-regulated secretion of 15 proteins and down-regulated the release of 17 proteins. Changes in the levels of four proteins involved in neuronal differentiation (thrombospondin-1, fibronectin, plasminogen activator inhibitor-1, and plasminogen activator urokinase) were verified by western blot or ELISA. In conclusion, this study identified a large number of proteins involved in neuronal development in the astrocyte secretome and implicated extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation.  相似文献   

13.
The diabetogenic action of alloxan is believed to involve oxygen free radicals and iron. Incubation of glutathione (GSH) and alloxan with rat liver ferritin resulted in release of ferrous iron as assayed by spectrophotometric detection of ferrous-bathophenanthroline complex formation. Neither GSH nor alloxan alone mediated iron release from ferritin. Superoxide dismutase (SOD) and catalase did not affect initial rates of iron release whereas ceruloplasmin was an effective inhibitor of iron release. The reaction of GSH with alloxan resulted in the formation of the alloxan radical which was detected by ESR spectroscopy and by following the increase in absorbance at 310nm. In both instances, the addition of ferritin resulted in diminished alloxan radical detection. Incubation of GSH, alloxan, and ferritin with phospholipid liposomes also resulted in lipid peroxidation. Lipid peroxidation did not occur in the absence of ferritin. The rates of lipid peroxidation were not affected by the addition of SOD or catalase, but were inhibited by ceruloplasmin. These results suggest that the alloxan radical releases iron from ferritin and indicates that ferritin iron may be involved in alloxan-promoted lipid peroxidation.  相似文献   

14.

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH–bimane-conjugate (GS–B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS–B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.

  相似文献   

15.
Previous works of our group demonstrated that xenobiotic metabolism by brain microsomes or cultured cerebral cells may promote the formation of reactive oxygen species. In order to characterise the risk of oxidative stress to both the central nervous system and the blood-brain barrier, we measured in the present work the release of superoxide in the culture medium of rat cerebrovascular endothelial cells during the metabolism of menadione, anthraquinone, diquat or nitrofurazone. Assays were run in the same experimental conditions on primary cultures of rat neurones and astrocytes. Quinone metabolism efficiently produced superoxide, but the production of radicals during the metabolism of diquat or nitrofurazone was very low, as a probable result of their reduced transport inside the cells. In all cell types assayed, superoxide production was time- and concentration-dependent, and cultured astrocytes always produced the highest amounts of radicals. Superoxide formation by microsomes prepared from the cultured cells was decreased by immunoinhibition of NADPH-cytochrome P450 reductase or by its irreversible inhibition by diphenyliodonium chloride, suggesting the involvement of this flavoprotein in radical production. Cerebrovascular endothelial cells cultured on collagen-coated filters produced equivalent amounts of superoxide both at their luminal side and through the artificial basement membrane, suggesting that in vivo, endothelial superoxide production may endanger adjacent astrocytes and neurones.  相似文献   

16.
Stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 receptor, is a chemokine involved in chemotaxis and brain development that also acts as co-receptor for HIV-1 infection. We previously demonstrated that CXCR4 and SDF-1alpha are expressed in cultured type-I cortical rat astrocytes, cortical neurones and cerebellar granule cells. Here, we investigated the possible functions of CXCR4 expressed in rat type-I cortical astrocytes and demonstrated that SDF-1alpha stimulated the proliferation of these cells in vitro. The proliferative activity induced by SDF-1alpha in astrocytes was reduced by PD98059, indicating the involvement of extracellular signal-regulated kinases (ERK1/2) in the astrocyte proliferation induced by CXCR4 stimulation. This observation was further confirmed showing that SDF-1alpha treatment selectively activated ERK1/2, but not p38 or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Moreover, both astrocyte proliferation and ERK1/2 phosphorylation, induced by SDF-1alpha, were inhibited by pertussis toxin (PTX) and wortmannin treatment indicating the involvement of a PTX sensitive G-protein and of phosphatidyl inositol-3 kinase in the signalling of SDF-1alpha. In addition, Pyk2 activation represent an upstream components for the CXCR4 signalling to ERK1/2 in astrocytes. To our knowledge, this is the first report demonstrating a proliferative effect for SDF-1alpha in primary cultures of rat type-I astrocytes, and showing that the activation of ERK1/2 is responsible for this effect. These data suggest that CXCR4/SDF-1 should play an important role in physiological and pathological glial proliferation, such as brain development, reactive gliosis and brain tumour formation.  相似文献   

17.
Tenascin-C is an extracellular matrix glycoprotein with trophic and repulsive properties, involved in migratory processes in CNS. Previous reports demonstrated that this molecule is produced and secreted by astrocytes. Preliminary data on fibroblasts and astrocytes have suggested that bFGF may modulate tenascin-C expression. bFGF is a mitogenic growth factor, involved in cell differentiation and neovascularization. In the present study, we ex amined whether bFGF modulates the expression of tenascin-C in hippocampal astrocytes from newborn rats. Our results suggest that bFGF increases the production of tenascin-C by cultured hippocampal astrocytes. We found that both tenascin-C mRNA and protein immunoreactivity were increased after bFGF treatment. Our results also demonstrated that tenas cin-C polypeptides were secreted into the extracellular medium. In agreement with previous studies, we suggest that secreted tenascin-C is mainly the high molecular weight form. In addition, our results suggest that a cleavage of the high molecular weight form may occur in the extracellular medium causing production of proteolytic fragments, that may modify the biological properties of tenascin-C. The present results may be relevant to the understanding of lesion scarring and regeneration process.  相似文献   

18.
Cells isolated from rat lung by protease digestion were found to catalyze the reduced glutathione (GSH) conjugation of 1-chloro-2,4-dinitrobenzene. The rate of conjugation was stimulated severalfold in the presence of GSH, indicating uptake and utilization of extracellular GSH by the lung cells. The stimulation was dependent on the GSH concentration and not due to a spontaneous nonenzymatic reaction or to extracellular GSH-transferase activity. Conjugation of 1-chloro-2,4-dinitrobenzene was also measured using isolated perfused rat lung. The conjugation, which was linear for a longer time than with the isolated cells, was also stimulated in the presence of GSH in the perfusion medium. The results indicate the ability of rat lung to utilize extracellular GSH.  相似文献   

19.
Brain human immunodeficiency virus type-1 (HIV-1) infection is associated with oxidative stress, which may lead to HIV-1 encephalitis, a chronic neurodegenerative condition. In vitro , oxidative stress can be induced in glial cells by exposure to HIV-1 envelope protein glycoprotein (gp120). Multidrug resistance proteins (Mrps) are known to efflux endogenous substrates (i.e. GSH and GSSG) involved in cellular defense against oxidative stress. Altered GSH/GSSG export may contribute to oxidative damage during HIV-1 encephalitis. At present, it is unknown if gp120 exposure can alter the functional expression of Mrp isoforms. Heat-shock protein 70, inducible nitric oxide synthase, intracellular GSSG, 2',7'-dichlorofluorescein fluorescence, and extracellular nitrite were increased in primary cultures of rat astrocytes triggered with gp120, suggesting an oxidative stress response. RT-PCR and immunoblot analysis demonstrated increased Mrp1 mRNA (2.3-fold) and protein (2.2-fold), respectively, in gp120 treated astrocytes while Mrp4 mRNA or protein expression was not changed. Cellular retention of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, an established Mrp substrate, was reduced (twofold) in gp120-treated astrocytes, suggesting increased Mrp-mediated transport. In addition, GSH and GSSG export were enhanced in gp120-triggered cells. These data suggest that gp120 can up-regulate Mrp1, but not Mrp4, functional expression in cultured astrocytes. Our observation of increased GSH/GSSG efflux in response to gp120 treatment implies that Mrp isoforms may be involved in regulating the oxidative stress response in glial cells.  相似文献   

20.
Metabolism of exogenous glutathione was investigated in suspensions of freshly isolated rat small-intestinal mucosal cells. The cells catalyzed the oxidation of reduced glutathione (GSH) to glutathione disulfide (GSSG). Neither serine . borate nor methionine significantly influenced this reaction. Formed GSSG was further metabolized as indicated by its disappearance from the medium. Degradation of GSSG was stimulated by methionine and inhibited by serine . borate. Separation and identification of GSSG metabolites were achieved by high performance liquid chromatography. The results indicate that the preferred route for GSSG metabolism to the constituent amino acids in small intestine, is by hydrolytic removal of the two gamma-glutamyl groups of GSSG to yield cystinyl-bisglycine which is subsequently hydrolyzed to cystine. gamma-Glutamyltransferase activity was compared in isolated intestinal, kidney and liver cells using gamma-glutamyl-p-nitrocarboxyanilide as substrate. Kidney cells were approximately 5-fold and 150-fold more active than intestinal and liver cells, respectively. Serine . borate markedly inhibited, and glycyl-glycine stimulated, hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide in all cell types confirming the involvement of gamma-glutamyltransferase in the reaction. The hydrolysis of gamma-glutamyl-p-nitrocarboxyanilide was inhibited to approximately the same extent by either GSH or GSSG suggesting that both compounds interact at the donor site of gamma-glutamyltransferase. Comparison of the rates of glutathione metabolism by isolated intestinal and kidney cells suggests that the intestinal contribution to the degradation of extracellular glutathione may be physiologically more important than has previously been assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号