首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Decorin was isolated from 7 M urea extract of bovine placental cotyledons by ion-exchange and hydrophobic chromatography. Decorin and its core protein showed a broad band at about 115 kDa and a single band at 47 kDa, respectively by SDS-PAGE. Anti-decorin core protein antiserum from pig skin was reacted with placental decorin and its core protein in western blotting. The NH2-terminal amino acid sequence of core protein from placental cotyledons was not different from that of core protein from skin and bone. Glycosaminoglycan of decorin was identified as dermatan sulfate by electrophoresis on a cellulose-acetate membrane and chondroitinase digestivity. Decorin bound to collagen in the order for type III, I, and V.  相似文献   

2.
Influence of decorin on fibroblast adhesion to fibronectin.   总被引:8,自引:0,他引:8  
Decorin is a ubiquitous small dermatan sulfate proteoglycan carrying a single glycosaminoglycan chain. It is known for its ability to bind, via its core protein, to interstitial collagens. Decorin was purified from the secretions of cultured human skin fibroblasts under non-denaturing conditions. The intact proteoglycan and its glycosaminoglycan-free core protein were tested for their interference with fibroblast adhesion to a fibronectin substrate. Concentrations of 40 nmoles or more of hexuronic acid/ml of decorin or equivalent amounts of core protein inhibited cell adhesion. Inhibition was caused by an interaction of core protein with fibronectin and not by masking of the fibronectin receptor. When cell-binding fragments of fibronectin were used as substrates, a similar inhibition of cell adhesion by decorin core protein was found, and in vitro assays demonstrated an interaction of core protein with the cell-binding domain of fibronectin. Decorin core protein also inhibited the low degree of cell adhesion to heparin-binding fragments on the N-terminus and near the C-terminus of the fibronectin molecules.  相似文献   

3.
1. We have isolated, chemically and immunologically characterized versican and decorin from bovine gingiva. 2. Versican was of large molecular weight and the molecular size of the core protein was estimated to be greater than 200 kDa. 3. The glycosaminoglycan chains were susceptible to chondroitinase ABC and N-linked oligosaccharides were present on the protein core of the molecule. 4. Immunological studies provided evidence that a hyaluronic acid binding region was present in the core protein of versican. 5. The overall structure was similar to that of versican isolated from bovine sclera. 6. Decorin had a molecular weight of 102 kDa and its glycosaminoglycan chain was completely digested by specific glycosidases. 7. The partially deglycosylated core protein had a molecular weight of 55 kDa and N-linked oligosaccharides were present on the molecule.  相似文献   

4.
We developed a method to purify decorin core protein from tissue with the goal of preserving its native structure and biological function. Currently, most procedures rely on the use of denaturing reagents potentially altering the biological activity. Decorin was purified from corneal stromas without the use of detergents or chaotropic reagents. Proteoglycans isolated using anion exchange chromatography on Q-Sepharose were treated with chondroitinase ABC. Decorin was isolated by a second Q-Sepharose chromatography with affinity chromatographies on heparin-Sepharose and concanavalin A-Sepharose. SDS-PAGE revealed a 98.4% pure 44kDa protein identified as decorin with a yield of 35mg per 100 bovine corneas. Identification was confirmed by NanoESI and MALDI qTOF. The novel inclusion of 20% propylene glycol in extraction and column buffers resulted in recoveries of proteoglycans comparable with those observed with detergents and urea. Purified decorin did alter the rate of fibrillogenesis of type I collagen and inhibited the lateral fusion of collagen fibrils. It also bound to [125I]TGF-beta1 with an apparent K(d) of 40nM. Circular dichroism spectroscopy of decorin displayed the spectra of alpha-helices and beta-pleated sheets consistent with those obtained from recombinant decorin. Urea-induced unfolding was cooperative and reversible while thermal denaturation caused irreversible unfolding. Native decorin can be purified from tissue in quantity and quality for biophysical, biochemical, and biological assays.  相似文献   

5.
Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteoglycans, suggests that it has a single or small number of defined sequences. On this basis, a similar approach to sequence the decorin of porcine skin much larger and more structurally complex dermatan sulfate/chondroitin sulfate GAG chain was undertaken. This approach resulted in information on the consistency/variability of its linkage region at the reducing end of the GAG chain, its iduronic acid-rich domain, glucuronic acid-rich domain, and non-reducing end. A general motif for the porcine skin decorin GAG chain was established. A single small decorin GAG chain was sequenced using MS/MS analysis. The data obtained in the study suggest that the decorin GAG chain has a small or a limited number of sequences.  相似文献   

6.
The family of small interstitial chondroitin/dermatan sulfate proteoglycans consists of at least three different molecular species: biglycan (proteoglycan I), decorin (proteoglycan II), and proteoglycan-100, which has a glycosylated core protein of about 100 kDa. The core protein of decorin has been shown to be responsible for receptor-mediated endocytosis of this proteoglycan species by a variety of mesenchymal cells. It is now demonstrated that skin fibroblasts and articular chondrocytes endocytose biglycan with an efficiency similar to that of decorin. Uptake of biglycan is also mediated by its core protein and can be inhibited by decorin in a partially competitive manner. In human fibroblasts, endosomal proteins of 51 and 26 kDa, which are known to bind decorin core protein, also interact with biglycan. This interaction can be inhibited by decorin. Bovine articular chondrocytes contained binding proteins of 48 and 25 kDa. Proteoglycan-100 can be distinguished from biglycan and decorin by its low clearance rate, which however, exceeds the rate of fluid phase endocytosis.  相似文献   

7.
Decorin is a widely distributed member of the extracellular matrix small leucine-rich repeat glycoprotein/proteoglycan family. For investigation of its physical properties, decorin from two sources (young steer skin and a recombinant adenovirus) was used. The first sample was extracted into 7 m urea and purified, while the second was isolated from medium conditioned by 293A cells infected with adenovirus and purified without chaotropes. The only chemical differences detected between these materials were a slightly shorter glycosaminoglycan chain and the retention of the propeptide on the latter. Circular dichroism spectra of the two samples were virtually identical, showing a high proportion of beta-sheet and beta-turn and little alpha-helix. The protein cores were completely denatured in 2.25 m guanidine HCl (GdnHCl) but recovered their secondary structure on removal of chaotrope. Light scattering of material eluted from gel-filtration columns in Tris-buffered saline, pH 7.0, gave molecular mass values of 165 +/- 1 kDa and 84.6 +/- 4 kDa for intact decorin and the glycoprotein core produced by digestion with chondroitin ABC lyase, respectively. Intact recombinant prodecorin had a mass of 148 +/- 18 kDa. These values, which are double those estimated from SDS gel electrophoresis or from the known sequences and compositions, were halved in 2.5 m GdnHCl. Data from solution x-ray scattering of intact decorin and its core in Tris-buffered saline are consistent with a dimeric particle whose protein component has a radius of gyration of 31.6 +/- 0.4 A, a maximum diameter of 98 +/- 5 A, and approximates two intertwined C shapes.  相似文献   

8.
Decorin is not only a regulator of matrix assembly but also a key signaling molecule that modulates the activity of tyrosine kinase receptors such as the epidermal growth factor receptor (EGFR). Decorin evokes protracted internalization of the EGFR via a caveolar-mediated endocytosis, which leads to EGFR degradation and attenuation of its signaling pathway. In this study, we tested if systemic delivery of decorin protein core would affect the biology of an orthotopic squamous carcinoma xenograft. After tumor engraftment, the animals were given intraperitoneal injections of either vehicle or decorin protein core (2.5-10 mg kg(-1)) every 2 days for 18-38 days. This regimen caused a significant and dose-dependent inhibition of the tumor xenograft growth, with a concurrent decrease in mitotic index and a significant increase in apoptosis. Positron emission tomography showed that the metabolic activity of the tumor xenografts was significantly reduced by decorin treatment. Decorin protein core specifically targeted the tumor cells enriched in EGFR and caused a significant down-regulation of EGFR and attenuation of its activity. In vitro studies showed that the uptake of decorin by the A431 cells was rapid and caused a protracted down-regulation of the EGFR to levels similar to those observed in the tumor xenografts. Furthermore, decorin induced apoptosis via activation of caspase-3. This could represent an additional mechanism whereby decorin might influence cell growth and survival.  相似文献   

9.
Decorin is a member of the small leucine-rich proteoglycan (SLRP) gene family that has recently become a focus in various areas of cancer research. The decorin protein consists of a core protein and a covalently linked glycosaminoglycan chain. Decorin binds to collagens type I, II and IV in vivo and promotes the formation of fibers with increased stability and changes in solubility. Further, the decorin core protein binds to growth factors, including transforming growth factor-beta (TGF-beta), to other intercellular matrix molecules such as fibronectin and thrombospondin, and to the decorin endocytosis receptor. Decorin may directly interfere with the cell cycle via the induction of p21WAF1/CIP1 (p21), a potent inhibitor of cyclin-dependent kinases (CDKs). Here, we discuss interactions of decorin with TGF-beta and with p21, both of which are relevant to carcinogenesis and tumor progression. TGF-beta is released by tumors of various histogenetic origins and promotes immunosuppression in the host and tumor immune escape by induction of growth arrest and apoptosis in immune cells, by downregulation of MHC II antigen expression and by changes in the cytokine release profiles of immune and tumor cells. Moreover, TGF-beta may modulate tumor growth in an autocrine and paracrine fashion, may mediate drug resistance, and may facilitate tumor angiogenesis. Decorin binds to TGF-beta, thus inhibiting its bioactivity, and is a direct or indirect negative modulator of TGF-beta synthesis. Ectopic expression of decorin results in the regression of rat C6 gliomas, an antineoplastic effect attributed to the reversal of TGF-beta-induced immunosuppression. On the other hand, de novo expression of decorin in colon cancer cells and some other tumor cells, even though not in glioma cells, results in an upregulation of p21 expression and a cell cycle arrest, presumably in a TGF-beta-independent manner. Decorin expression is downregulated in many tumors but upregulated in the peritumoral stroma. By virtue of its growth regulatory and immunomodulatory properties, decorin promises to become a novel target for the experimental therapy of human cancers.  相似文献   

10.
Decorin binds near the C terminus of type I collagen   总被引:5,自引:0,他引:5  
Decorin belongs to a family of small leucine-rich proteoglycans that are directly involved in the control of matrix organization and cell growth. Genetic evidence indicates that decorin is required for the proper assembly of collagenous matrices. Here, we sought to establish the precise binding site of decorin on type I collagen. Using rotary shadowing electron microscopy and photoaffinity labeling, we mapped the binding site of decorin protein core to a narrow region near the C terminus of type I collagen. This region is located within the cyanogen bromide peptide fragment alpha1(I) CB6 and is approximately 25 nm from the C terminus, in a zone that coincides with the c(1) band of the collagen fibril d-period. This location is very close to one of the major intermolecular cross-linking sites of collagen heterotrimers. Thus, decorin protein core possesses a unique binding specificity that could potentially regulate collagen fibril stability.  相似文献   

11.
The small dermatan sulfate proteoglycan decorin is involved in the regulation of collagen fibrillogenesis, cell adhesion and migration, and growth factor signaling. In a progeroid patient carrying two point mutations in ß4galactosyltransferase I (ß4galT-7) only 50% of the decorin core protein molecules are substituted with glycosaminoglycan chains. We expressed decorin, as well as wild-type and mutant alleles of ß4galT-7 in galactosyltransferase-deficient CHO618 cells. Decorin was less efficiently substituted with glycosaminoglycan chains upon expression of ß4galT-7186D compared to ß4galT-7-expressing cells. Decorin from ß4galT-7-expressing cells displayed increased molecular heterogeneity. Decorin glycosaminoglycan chains were completely susceptible to chondroitinase ABC treatment. Cells expressing ß4galT-7206P did not synthesize the proteoglycan form of decorin. Thus, the ß4galT-7 mutations directly affect the molecular phenotype of decorin observed in a patient with the progeroid form of Ehlers-Danlos syndrome, which may be a major mechanistic cause for the skin and wound healing defects observed in this patient.  相似文献   

12.
Decorin, a ubiquitous small interstitial dermatan sulfate proteoglycan, interacts with several extracellular matrix components, e.g., with type I collagen and fibronectin. Using a solid phase assay it is shown that the intact proteoglycan as well as its glycosaminoglycan-free core protein exhibits with KD values of about 5 nM and 2 nM, respectively, high affinity binding also to thrombospondin. However, the polysaccharide chain was required for an interaction with Sepharose-bound thrombospondin and served itself as ligand. In light of the results of binding studies with an N-terminal heparin-binding fragment of thrombospondin it is concluded that several structural features of thrombospondin and of decorin contribute to the mutual interaction of the two macromolecules. Thrombospondin substrata allowed attachment but prevented spreading of human skin fibroblasts. The addition of decorin or of its glycosaminoglycan-free core protein led to a considerable delay of cell attachment on a thrombospondin substrate. The strength of cell attachment appeared to be reduced. These data support the antiadhesive role of decorin regardless of whether subsequent cell spreading is supported or not.  相似文献   

13.
Myostatin, a member of TGF-beta superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-beta and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn(2+) greater than 10microM, but not in the absence of Zn(2+). Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K(D)) of 2.02x10(-8)M and 9.36x10(-9)M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.  相似文献   

14.
Decorin is one important member of the family of small leucine-rich proteoglycans, which are widely distributed in connective tissues in the body such as tendon and ligament. Decorin may be responsible for collagen fibril connection in those tissues. A recent hypothesis suggests that decorin may bind to collagen with its core protein while binding to another decorin through the interaction with their glycosaminoglycan (GAG) chains. However, there is no direct evidence supporting this hypothesis to date. In this study, the interaction of decorin GAG chains was directly determined for the first time. The rupture force of single bonds between decorins (GAG chains interaction) was determined directly as 16.5+/-5.1 pN using a laser tweezers/interferometer single molecular nanomechanical testing system. This information can improve our understanding of the mechanical properties of connective tissues at the molecular level.  相似文献   

15.
Myofibroblasts play an important role in fibrogenesis. Myofibroblasts secrete several components of the extracellular matrix, including decorin. To clarify the properties of decorin synthesized by myofibroblasts, we have purified and characterized decorin secreted into culture medium by the myofibroblast cell line MRC-5. Decorin was purified by successive chromatography steps using Hitrap Q and Superdex 200. Purified decorin showed a broad band on SDS-polyacrylamide gel electrophoresis, which was resolved into two smaller molecular weight bands after digestion with chondroitinase ABC. Further digestion with N-glycanase resolved these two bands into a single band, indicating that the N-glycation pattern of decorin is heterogeneous. The N-terminal amino acid sequence analysis of the purified protein and its reactivity towards an antibody raised against a C-terminal peptide of decorin indicate that MRC-5 cells secrete full-length decorin into the culture medium. To characterize the glycosaminoglycan chains attached to decorin, glycosaminoglycans from the purified protein were treated with chondroitinase ACI, chondroitinase ACII, chondroitinase ABC and chondroitinase B. The resulting disaccharides were analyzed by chromatography, which indicated that decorin secreted by MRC-5 cells is a dermatan sulfate proteoglycan. In conclusion, the decorin secreted by MRC-5 cells has similar characteristics to the decorin expressed in several tissues. Thus, culturing MRC-5 cells may be highly useful for studying the role of decorin and myofibroblasts in fibrosis.  相似文献   

16.
Decorin is a member of the family of small leucine-rich proteoglycans found in the extracellular matrix and has an important role in promoting fiber formation and in controlling cell proliferation. Here, we have investigated whether the leucine-rich repeat (LRR) region of decorin interacts with proteins from human lung fibroblasts by using a yeast two-hybrid assay. We report that the LRR region of decorin interacts with the cytoskeletal protein, filamin-A (ABP-280), a peripheral cytoplasmic protein. This interaction is dependent on the 288 carboxyl-terminal amino acids of filamin-A, which correspond to repeats 22-24 of its conserved beta-sheet structure. We also show that the recombinant LRR region of decorin binds to filamin-A in vitro, and that the deglycosylated core protein of decorin coprecipitates with filamin-A, whereas intact decorin does not. Together, these results suggest that proteins containing the LRR motif that interact with filamin-A may be present in the cytoplasm or at the plasma membrane.  相似文献   

17.
Biglycan and decorin have been overexpressed in eukaryotic cells and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans (Hocking, A. M., Strugnell, R. A., Ramamurthy, P., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19571-19577; Ramamurthy, P., Hocking, A. M., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19578-19584). Far-UV CD spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the final form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that in this specific domain the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provide further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1 and 2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1 and 6 M urea, probably indicating the presence of stable unfolding intermediates.  相似文献   

18.
Decorin, a small interstitial dermatan sulfate proteoglycan, is turned over in cultured cells of mesenchymal origin by receptor-mediated endocytosis followed by intralysosomal degradation. Two endosomal proteins of 51 and 26 kD have been implicated in the endocytotic process because of their interaction with decorin core protein. However, heparin and protein-free dermatan sulfate were able to inhibit endocytosis of decorin in a concentration-dependent manner. After Western blotting of endosomal proteins, there was competition for binding to the 51- and 26-kD proteins between heparin and decorin. In spite of its high-affinity binding, heparin was poorly cleared from the medium of cultured cells and then catabolized in lysosomes. In contrast to decorin, binding of heparin to the 51- and 26-kD proteins was insensitive to acidic pH, thus presumably preventing its dissociation from the receptor in the endosome. Recycling of heparin to the cell surface after internalization could indeed be demonstrated.  相似文献   

19.
It was previously shown that a citric acid buffer extract of human dermis (extract D) inhibited growth of human diploid fibroblasts in monolayer culture (Muir et al., 1997). Further fractionation has shown that the active principle is probably a proteoglycan, and that retention of its inhibitory activity is dependent on the use protease inhibitors throughout the extraction procedure. Elution of extract D from a DEAE-cellulose column produced four major peaks, each of which was subjected to SDS-PAGE as well as being tested for inhibitory activity on the growth of fibroblasts in culture. Peaks III and IV had no inhibitory effect, but peak I contained highly active material. Gels of this peak showed prominent bands of 120 kDa (corresponding to dermatan sulphate proteoglycan II, DS-PG II) and at 45 kDa (corresponding to the core protein). The latter band became more prominent when extract D which had been treated with chrondroitinase ABC was electrophoresed. Their identities were verified by Western blotting. Peak II also contained some slower-acting inhibitory material which has as yet to be identified, but contains little or no protein corresponding to the decorin core-protein. The data indicate that the intact decorin molecule, DS-PG II, is the main inhibitory principle in human skin.  相似文献   

20.
Proteoglycans were extracted and isolated from adult bovine muscle tissue by dissociative extraction followed by density gradient centrifugation, gel chromatography and ion-exchange chromatography. Two proteoglycans were characterized; one of large molecular size (PG-L) and one of small molecular size (PG-S). The recovery of PG-L and PG-S was 33% and 67% respectively. By cellulose acetate electrophoresis before and after treatment with chondroitinase AC and ABC both samples were shown to carry predominantly dermatan sulfate chains. The large proteoglycan was recognized with an antibody against a large dermatan sulfate proteoglycan from bovine sclera, whereas the small was recognized by an antibody against decorin from bovine sclera. Chondroitinase ABC treatment of PG-S followed by SDS-PAGe showed a core protein with a molecular weight of 45 kDa, which also reacted with the decorin antibody. Amino-acid analysis of both PG-L and PG-S revealed an amino-acid composition closely similar, although not identical, to the large dermatan sulfate proteoglycan from bovine sclera and decorin respectively. Immunohistochemical analyses of muscle tissue sections showed that decorin and the large dermatan sulfate proteoglycan are present in the perimysium layers of muscle tissue, although with a somewhat different pattern of distribution. Decorin was, in addition, found in the endomysium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号