首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of prostaglandins and analogs to the lipocyte PGE receptor was shown to exhibit a high degree of structural specificity. Small changes, particulary at the 9-keto or 15-hydroxyl position, were found to drastically diminish interaction with the receptor. Studies of a rather substantial number of compounds revealed a close relationshio between affinity for the lipocyte PGE receptor and the ability to stimulate cyclic AMP synthesis in the isolated mouse ovary. In general, activities in these two parameters follow the biological potencies generally recognized for the compounds.  相似文献   

2.
The effect of treatment of isolated rat adipocytes with prostaglandin E2 (PGE2) on subsequent [3H]PGE2 binding was studied. In addition, the antilipolytic effects of was studied. In addition, the antilipolytic effects of PGE2, adenosine, and insulin were studied in control and PGE2-treated adipocytes. Treatment of adipocytes with PGE2 (1 microM) decreased the binding of [3H]PGE2 by 61% (from 11.0 to 4.6 fmol/10(6) cells, P less than 0.005). Scatchard analysis of the binding data demonstrated that the decrease of PGE2 receptor binding was due to a decrease in the apparent number of PGE2 receptors while the apparent receptor affinity was unaltered. Reduction of the PGE2 receptor binding was specifically regulated inasmuch as structurally related compounds such as PGF2 alpha and arachidonic acid had only minor effects on subsequent [3H]PGE2 receptor binding. Reduction of the available receptor number was associated with a significant decrease in the antilipolytic effect of PGE2 on the isoproterenol-stimulated lipolysis (P less than 0.05). The maximal antilipolytic effect of PGE2 was decreased by 45%. Desensitization of the biological effect of PGE2 (antilipolysis) was only partially specifically regulated inasmuch as the antilipolytic compound phenylisopropyladenosine also had reduced antilipolytic effect in PGE2-treated cells. However, the antilipolytic effect of insulin was similar in control and PGE2-treated cells. It was found that the PGE2-induced decrease of [3H]PGE2 receptor binding may be due to a very tight coupling between the PGE2 molecule and its specific receptor. This tight coupling may then represent an occupancy of the receptor rather than a true loss of receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A prostaglandin E2 (PGE2) receptor was solubilized and isolated from cardiac sarcolemma membranes. Its binding characteristics are almost identical to those of the membrane bound receptor. [3H]PGE2 binding to solubilized and membrane bound receptor was sensitive to elevated temperature and no binding was observed in the absence of NaCl. No significant effects of DTT, ATP, Mg2+, Ca2+ or of changes in buffer pH were observed on [3H]PGE2 binding to either solubilized or membrane-bound receptor. Unlabelled PGE1 displaced over 90% of [3H]PGE2 from the CHAPS-solubilized receptor. PGD2, PGI2, PGF2 alpha and 6-keto-PGF1 alpha were not effective in displacing [3H]PGE2 from the receptor. Scatchard analysis of [3H]PGE2 binding to CHAPS-solubilized receptor revealed the presence of two types of PGE2 binding sites with Kd of 0.33 +/- 0.05 nM and 3.00 +/- 0.27 nM and Bmax of 0.5 +/- 0.04 and 2.0 +/- 0.1 pmol/mg of protein. The functional PGE2 receptor was isolated from CHAPS-solubilized SL membrane using two independent methods: first by a WGA-Sepharose chromatography and second by sucrose gradient density centrifugation. Receptor isolated by these two methods bound [3H]PGE2. Unlabelled PGE1 and PGE2 displaced [3H]PGE2 from the purified receptor. Scatchard analysis of [3H]PGE2 binding to purified receptor revealed the presence of the two binding sites as observed for the membrane bound and CHAPS-solubilized receptor. SDS-polyacrylamide gel electrophoresis of the purified receptor fractions revealed the presence of a protein band of M(r) of approx. 100,000. This 100-kDa was photolabelled with [3H]azido-PGE2, a photoactive derivative of PGE2. We propose that this 100-kDa protein is a cardiac PGE2 receptor.  相似文献   

4.
Thromboxane receptors can modulate gastric acid secretion in the rat   总被引:1,自引:0,他引:1  
The effects of PGE2 and the thromboxane A2 mimetic, U-46619, have been investigated on gastric secretion in the rat isolated gastric mucosa. Both compounds produced concentration-related inhibitions of histamine-induced secretion whereas only U-46619 inhibited methacholine-stimulated and basal secretion, and neither compound had any effect on the secretory response to dbcAMP. Indomethacin had no effect on the antisecretory activity of PGE2 but markedly reduced the potency of U-46619 suggesting that endogenous prostaglandins play a role in the U-46619 responses. However, direct inhibitory effects of U-46619 were seen at high concentrations. The thromboxane receptor antagonist AH23848, at concentrations selective for thromboxane receptors, had no effect on responses to PGE2 but markedly inhibited the effects of U-46619. We conclude that the antisecretory profile of U-46619 differs from that of PGE2. U-46619 has both direct and indirect antisecretory effects and these are mediated via thromboxane receptors in the rat gastric mucosa.  相似文献   

5.
PG are known to inhibit T cell proliferation, at least in part by suppressing IL-2 production, but effects of PG on the production of other lymphokines have not been well studied. We have found that PGE2 and PGE1, but not PGF2 alpha, inhibit both proliferation and production of granulocyte-macrophage (GM)-CSF by murine TH clones stimulated with Ag or anti-CD3 antibody. Thus, signals generated via the Ag receptor:CD3 complex were inhibited by PGE. Most interesting, however, was the finding that PGE2 and PGE1 could act synergistically with IL-2 for the induction of GM-CSF in some TH1 clones. Dependence on PGE2 for this response was not found in all clones, as some TH1 cells could produce GM-CSF after IL-2 alone, and some cells did not produce GM-CSF even in the presence of PGE2 and IL-2. These observations indicate that there is a subset of TH1 cells receptive to a stimulating activity of PGE2 in the presence of IL-2. PGE2 is known to elevate cAMP levels in T cells. Therefore, we tested whether other agents known to increase cAMP, such as forskolin and cholera toxin, could act in conjunction with IL-2 to induce GM-CSF secretion. As was found with PGE2, these compounds also induced GM-CSF activity in the presence of IL-2, suggesting a critical role for cAMP in this process. Overall these data indicate that the requirements for activation of GM-CSF secretion vary among individual T cells. Most importantly they provide the first evidence that E-series PG are positive signals for lymphokine induction in certain T cells, whereas simultaneously acting as negative signals limiting proliferation. This result also suggests that treatment with anti-inflammatory drugs that decrease PGE2 concentrations may inhibit lymphokine secretion normally stimulated by this pathway.  相似文献   

6.
Prolonged incubation of rat adipocytes with (-)N6-phenylisopropyl adenosine (PIA) (an A1 adenosine receptor agonist) leads to down-regulation of each of the three subtypes of Gi (Green, A., Johnson, J. L., and Milligan, G. (1990) J. Biol. Chem. 265, 5206-5210). To determine whether other inhibitors of adenylylcyclase would have similar actions, we incubated adipocytes in primary culture with PIA, prostaglandin E1 (PGE1), or nicotinic acid. After various times cells were homogenized, and crude membrane fractions were analyzed on Western blots using antipeptide antisera to alpha- and beta-subunits of G-proteins (SG1 (which binds to alpha i1 and alpha i2), I3B (which binds to alpha i3), BN2 (binds to beta-subunits) and CS1 (recognizes forms of alpha s)). PIA and PGE1 caused approximately 90% down-regulation of alpha i1 and alpha i3, and about 50% loss of alpha i2 and beta-subunits. In contrast, nicotinic acid at concentrations up to 1 mM had no effect on levels of any of these Gi subtypes. None of the compounds altered levels of either a 43- or 47-kDa form of alpha s. PIA caused about a 50% decrease in binding of [3H]DPCPX (an A1 adenosine receptor antagonist), indicating adenosine receptor down-regulation; however, neither PGE1 nor nicotinic acid treatment altered [3H]DPCPX binding. None of the treatments affected the activity of adenylylcyclase when measured in the presence of 100 microM forskolin and 10 mM Mn2+, indicating that the catalytic subunit of adenylylcyclase is not altered. To determine whether Gi down-regulation results in heterologous desensitization, we incubated adipocytes with maximally effective concentrations of PIA (300 nM), PGE1 (3 microM), or nicotinic acid (1 mM) for 4 days. The cells were then washed and incubated for an additional 30 min with various concentrations of these compounds to determine their ability to inhibit lipolysis. PIA caused a (marked) decrease in the sensitivity of the cells to both PIA and PGE1, thus indicating heterologous desensitization. Similarly, PGE1 decreased the sensitivity of the cells to both PGE1 and PIA, again demonstrating heterologous desensitization. In contrast, prolonged incubation with nicotinic acid decreased the sensitivity of the cells to nicotinic acid but had no effect on the sensitivity of the cells to PIA. Adenylylcyclase in membranes from PGE1-treated cells showed decreased sensitivity to inhibition by PIA. In contrast, adenylylcyclase showed normal sensitivity to PIA in membranes from nicotinic acid-treated cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We have reported previously that murine mammary tumor cell subpopulations isolated from one spontaneous adenocarcinoma are heterogenous in terms of prostaglandin E2 (PGE2) synthetic capacity. We have also shown that tumor-PGE2 contributes to the ability of these cells to grow and metastasize in vivo (Fulton and Heppner: Cancer Research 45:4779-4784, 1985). In the present study, we have asked whether exogenous PGE2 has direct effects on the proliferation of these cells in vitro and if such responses can be attributed to the capacity of these cells to 1) bind PGE2 and 2) activate adenylate cyclase via the PGE2 receptor. We report that PGE2, at concentrations below 1 x 10(-5) M, does not affect the proliferation rate of these cells. This unresponsiveness is not due to the absence of receptors for PGE2. However, marked heterogeneity in receptor binding and function was detected in these closely related cell lines. Two metastatic lines (66 and 410.4) have high-affinity receptors for PGE2 (average Kd = 4.3 x 10(-9) M/L and 4.2 x 10(-9) M/L, respectively) and similar binding capacities (4.1 x 10(-4) and 2.9 x 10(4) binding sites, respectively). Two nonmetastatic lines, 410 and 67, have receptors with lower affinity (Kd = 8.3 x 10(-9) M/L and 1.6 x 10(-7) M/L, respectively) and binding capacities of 2.8 x 10(5)/410 cell or 7.3 x 10(4)/67 cell. A third nonmetastatic line (168) exhibits no specific binding. PGE2 receptor stimulation leads to elevated intracellular cAMP in lines 66, 410, and 67. Line 410.4 cells appear to have a functional lesion in the PGE2 receptor resulting in a failure to elevate cAMP in response to receptor occupancy. Adenylate cyclase can, however, be activated in these cells by cholera toxin, NaF, or forskolin. In comparison to the other cell lines, line 168 cells respond poorly to all cAMP-stimulating agents. Thus, we have found that PGE2 binding is a heterogenous property for these cells, and, in addition, we have identified an apparent uncoupling of PGE2 receptor to the adenylate cyclase system in one cell line.  相似文献   

8.
Prostaglandin E1/I2 and insulin receptors of human erythrocyte and platelet are capable of modulating each other's activity. This modulation of the receptor activity and number in one system by a second receptor system in human platelet and erythrocyte seems to be beneficial. Insulin increases the PGE1 binding to platelets and thereby enhances the platelet antiaggregatory action of prostaglandin by increasing cyclic AMP levels. Similarly, PGE1 increases insulin binding to human erythrocyte, and thereby reduces the optimum concentration of insulin for a maximal reduction in membrane microviscosity. During ischemia the reduced response of platelets to the inhibitory effect of PGE1 or PGI2 relates to the impaired PGE1/I2 receptor activity. Treatment of these platelets with insulin at physiological concentrations can normalise the PGE1/I2 receptor activity. This review focuses on the relationship between the two receptor systems in human blood cells.  相似文献   

9.
We have shown previously that murine mammary adenocarcinoma cells both synthesize prostaglandin E2 (PGE2) and have a high affinity receptor for this ligand. Modulation of either PGE synthesis or PGE receptor function changes the metastatic potential of these cells. Because of the importance of laminin and laminin receptors to the metastatic process, we asked whether or not the PGE receptor participates in tumor cell-laminin interactions. As has been reported for many other tumor cells, laminin and the laminin-derived peptide PA22-2, containing the sequence IKVAV, mediate attachment of line 410.4 mammary tumor cells in vitro. We now demonstrate that the attachment of 410.4 cells to laminin or peptide PA22-2 was significantly inhibited by three PGE receptor antagonists, LE0101, SC19220, and sodium meclofenamate. LE0101 was most active, inhibiting tumor cell adhesion in a dose-dependent manner in the absence of nonspecific toxicity. These receptor antagonists had no effect on the PA22-2-mediated attachment of a PGE receptor negative tumor cell line, except at the highest concentration of LE0101 tested. No inhibition of adhesion to Type I collagen was seen. These results indicate that the PGE2 receptor modulates tumor cell adhesion to laminin which may subsequently affect the in vivo process of metastasis.  相似文献   

10.
Prostaglandins (PG) of the E series and catecholamines stimulate adenosine 3':5'-monophosphate (cAMP) formation in human astrocytoma cells (1321N1). These two classes of effectors activated adenylate cyclase upon interaction with different receptor systems. No evidence for a mediatory role for PG in the action of catecholamines was found. PG interacted with 1321N1 cells with an order of potency of PGE1 = PGE2 greater than PGA1 greater than PGF2 alpha. The effect of combinations of the various PG indicated that all efficacious PG interacted with a common receptor. 7-Oxa-13-prostynoic acid and indomethacin were shown to be competitive inhibitors of the effect of PGE1 with Ki values of 4 and 150 micron, respectively. These two compounds did not inhibit the effect of isoproterenol. Polyphloretin phosphate caused a complex pattern of inhibition of the effects of PGE1 and at higher concentrations also inhibited the effects of isoproterenol. The mefenamate class of nonsteroidal anti-inflammatory agents was found to inhibit the effects of PGE1 with a potency order of meclofenamic acid greater than flufenamic acid = mefenamic acid. The inhibitory action of meclofenamic acid was complex involving specific, but partial, insurmountable antagonism of PGE1 as well as competitive inhibition of PGE1 effects. At higher concentrations of meclofenamic acid a nonspecific inhibition of the effects of both PGE1 and isoproterenol was observed. These studies suggest that the inhibition by nonsteroidal anti-inflammatory agents of the physiological effects of PGE1 in animals may occur, at least in part, at the level of adenylate cyclase. The possibility that multiple classes of adenylate cyclase-linked PGE receptors might exist in nature is discussed.  相似文献   

11.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

12.
Prostaglandin E2 (PGE2) was found to bind specifically to a 100,000 x g pellet prepared from bovine adrenal medulla. The PGE receptor was associated with a GTP-binding protein (G-protein) and could be covalently cross-linked with this G-protein by dithiobis(succinimidyl propionate) in the 100,000 x g pellet (Negishi, M., Ito, S., Tanaka, T., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1987) J. Biol. Chem. 262, 12077-12084). In order to characterize the G-protein associated with the PGE receptor and reconstitute these proteins in phospholipid vesicles, we purified the G-protein to apparent homogeneity from the 100,000 x g pellet. The G-protein served as a substrate of pertussis toxin but differed in its alpha subunit from two known pertussis toxin substrate G-proteins (Gi and Go) purified from bovine brain. The molecular weight of the alpha subunit was 40,000, which is between those of Gi and Go. The purified protein was also distinguished immunologically from Gi and Go and was referred to as Gam. PGE receptor was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid and freed from G-proteins by wheat germ agglutinin column chromatography. Reconstitution of the PGE receptor with pure Gam, Gi, or Go in phospholipid vesicles resulted in a remarkable restoration of [3H]PGE2 binding activity in a GTP-dependent manner. The efficiency of these three G-proteins in this capacity was roughly equal. When pertussis toxin- or N-ethylmaleimide-treated G-proteins, instead of the native ones, were reconstituted into vesicles, the restoration of binding activity was no longer observed. The displacement of [3H]PGE2 binding was specific for PGE1 and PGE2. Furthermore, addition of PGE2 stimulated the GTPase activity of the G-proteins in reconstituted vesicles. These results indicate that the PGE receptor can couple functionally with Gam, Gi, or Go in phospholipid vesicles and suggest that Gam may be involved in signal transduction of the PGE receptor in bovine adrenal medulla.  相似文献   

13.
The interaction between interleukin IL-1 alpha and PGE2 on P388D1 cells has been investigated. Preincubation of murine macrophage-like cells, P388D1, with IL-1 alpha (0-73 pM) reduced the binding of PGE2 to these cells in a concentration-dependent manner. Scatchard analysis showed that IL-1 alpha decreased the PGE2 binding by lowering both the high and low affinity receptor binding capacities (from 0.31 +/- 0.02 to 0.12 +/- 0.01 fmol/10(6) cells for the high affinity receptor binding sites and from 2.41 +/- 0.12 to 1.51 +/- 0.21 fmol/10(6) cells for the low affinity receptor binding sites). However, the dissociation constants of the receptors of the IL-1 alpha-treated cells remained unchanged. Inhibition of PGE2 binding by IL-1 alpha did not involve changes in either protein phosphorylation or intracellular cyclic AMP levels. Our data clearly show that IL-1 alpha inhibits the binding of PGE2 to monocytes/macrophages and may thereby counter the immunosuppressive actions of PGE2.  相似文献   

14.
Prostaglandin E(2) (PGE(2)) is a bioactive prostanoid implicated in the inflammatory processes of acute lung injury/acute respiratory distress syndrome. This study investigated whether PGE(2) can induce production of interleukin (IL)-8, the major chemokine for neutrophil activation, from human pulmonary microvascular endothelial cells (HPMVECs). PGE(2) significantly enhanced IL-8 protein production with increases in IL-8 mRNA expression and intracellular cAMP levels. HPMVECs expressed only EP4 receptor mRNA. The PGE(2) effects were mimicked by a selective EP4 receptor agonist, ONO-AE1-329, and inhibited by a selective EP4 receptor antagonist, ONO-AE3-208, or a protein kinase A inhibitor, Rp-adenosine 3',5'-cyclic monophosphorothioate triethylamine salt. The specific agonist for EP1, EP2, or EP3 receptor did not induce IL-8 production. PGE(2)-induced IL-8 production was accompanied by p38 phosphorylation and was significantly inhibited by a p38 inhibitor, SB-203580, but not by an ERK1/2 inhibitor, U-0126, or a JNK inhibitor, SP-600125. Additionally, PGE(2) increased cyclooxygenase-2 expression with no change in constitutive cyclooxygenase-1 expression, suggesting possible involvement of an autocrine or paracrine manner. In conclusion, PGE(2) enhances IL-8 production via EP4 receptor coupled to G(s) protein in HPMVECs. Activation of the cAMP/protein kinase A pathway, followed by p38 activation, is essential for these mechanisms. Because neutrophils play a critical role in the inflammation of acute lung injury/acute respiratory distress syndrome, IL-8 released from the pulmonary microvasculature in response to PGE(2) may contribute to pathophysiology of this disease.  相似文献   

15.
The interstitial cells of Cajal (ICC) are pacemaker cells in gastrointestinal tract and generate an electrical rhythm in gastrointestinal muscles. We investigated the possibility that PGE(2) might affect the electrical properties of cultured ICC by activating ATP-dependent K(+) channels and, the EP receptor subtypes and the subunits of ATP-dependent K(+) channels involved in these activities were identified. In addition, the regulation of intracellular Ca(2+) ([Ca(2+)](i)) mobilization may be involved the action of PGE(2) on ICC. Treatments of ICC with PGE(2) inhibited electrical pacemaker activities in the same manner as pinacidil, an ATP-dependent K(+) channel opener and PGE(2) had only a dose-dependent effect. Using RT-PCR technique, we found that ATP-dependent K(+) channels exist in ICC and that these are composed of K(ir) 6.2 and SUR 2B subunits. To characterize the specific membrane EP receptor subtypes in ICC, EP receptor agonists and RT-PCR were used: Butaprost (an EP(2) receptor agonist) showed the actions on pacemaker currents in the same manner as PGE(2). However sulprostone (a mixed EP(1) and EP(3) agonist) had no effects. In addition, RT-PCR results indicated the presence of the EP(2) receptor in ICC. To investigate cAMP involvement in the effects of PGE(2) on ICCs, SQ-22536 (an inhibitor of adenylate cyclase) and cAMP assays were used. SQ-22536 did not affect the effect of PGE(2) on pacemaker currents, and PGE(2) did not stimulate cAMP production. Also, we found PGE(2) inhibited the spontaneous [Ca(2+)](i) oscillations in cultured ICC. These observations indicate that PGE(2) alters pacemaker currents by activating the ATP-dependent K(+) channels comprised of K(ir) 6.2-SUR 2B in ICC and this action of PGE(2) are through EP(2) receptor subtype and also the activation of ATP-dependent K(+) channels involves intracellular Ca(2+) mobilization.  相似文献   

16.
17.
Previous studies have shown that the natural prostanoids, PGE2, PGE1 and PGF2 alpha are potent stimulators of bone resorption. In this study, we have examined the effects of alterations in the cyclopentane ring of these prostanoids for their effect on the resorptive response of cultured long bones from 19-day fetal rats as measured by the release of previously incorporated 45Ca. Indomethacin (10(-6)M) was added to minimize endogenous prostaglandin production. In this system PGE2 and PGE1, the 9 keto, 11 alpha hydroxy compounds, were approximately equally effective at concentrations of 10(-8) to 10(-6) M. The 9 alpha hydroxy, 11 alpha hydroxy compound, PGF2 alpha, was active at 10(-7) to 10(-5) M. In contrast, the 9 alpha hydroxy, 11-keto compound, PGD2, showed only a minimal stimulation of bone resorption at 10(-5) M. While these data suggested that the 11 alpha hydroxy group was important for bone resorbing activity, 11 beta PGE2 and 11-deoxy PGE1 were only slightly less potent than their physiologic counterparts. Both 9 beta, 11 alpha PGF2 and 9 alpha, 11 beta PGF2 were less potent than PGF2 alpha but did cause substantial stimulation of bone resorption and were equally effective at 10(-6) to 10(-5) M. 9 alpha, 11 beta PGF2 alpha is of particular interest since it is major metabolite of PGD2. These results suggest that the binding of prostanoids to the receptor which mediates bone resorption is affected by changes at the 9 and 11 positions of the pentane ring but do not support the hypothesis that the 11 alpha OH function is essential for this biological activity.  相似文献   

18.
Mast cells are implicated in the pathogenesis of a broad spectrum of immunological disorders. These cells release inflammatory mediators in response to a number of stimuli, including IgE-Ag complexes. The degranulation of mast cells is modified by PGs. To begin to delineate the pathway(s) used by PGs to regulate mast cell function, we examined bone marrow-derived mast cells (BMMC) cultured from mice deficient in the EP(1), EP(2), EP(3), and EP(4) receptors for PGE(2). Although BMMCs express all four of these PGE(2) receptors, potentiation of Ag-stimulated degranulation and IL-6 cytokine production by PGE(2) is dependent on the EP(3) receptor. Consistent with the coupling of this receptor to G(alphai), PGE(2) activation of the EP(3) receptor leads to both inhibition of adenylate cyclase and increased intracellular Ca(2+). The magnitude of increase in intracellular Ca(2+) induced by EP(3) activation is similar to that observed after activation of cells with IgE and Ag. Although PGE alone is not sufficient to initiate BMMC degranulation, stimulation of cells with PGE along with PMA induces degranulation. These actions are mediated by the EP(3) receptor through signals involving Ca(2+) mobilization and/or decreased cAMP levels. Accordingly, these studies identify PGE(2)/EP(3) as a proinflammatory signaling pathway that promotes mast cell activation.  相似文献   

19.
Three main pathways have been implicated in desensitization of receptors that stimulate adenylylcyclase (AC): cAMP-mediated phosphorylation; cAMP-independent phosphorylation, and receptor internalization. Cell lines derived from the murine Ltk- cell were found useful in exploring the contribution of cAMP-dependent phosphorylation in V2 vasopressin receptor desensitization. The HTB-2 cell expresses the human V2 vasopressin receptor, introduced by transfection of human genomic DNA, and the prostaglandin E1 (PGE1) receptor, endogenous to the Ltk- cell. The A7 cell expresses the hamster beta 2-adrenoceptor, which undergoes the above-mentioned desensitization processes. Treatment of HTB-2 cells with arginine-vasopressin (AVP) had no effect on AC responsiveness to PGE1, but promoted desensitization of the AVP response. This was seen as a 5-6-fold right shift in the dose-response curves for AVP action (cAMP accumulation in intact cells and AC stimulation in homogenates and isolated membranes) and in a decrease in the maximum effect of AVP on these parameters. AVP treatment caused a decrease in cell surface receptors to approximately 75% of control without changes in KD, as determined by Scatchard analysis. When cAMP was increased by treatment with 10 microM PGE1 and isobutylmethylxanthine, desensitization of the PGE1 receptor was observed but not of the AVP receptor. In A7 cells the same treatment caused, as expected, a 3-fold right shift in the dose-response curve for AC stimulation by isoproterenol, indicating that L cells can mediate heterologous desensitization. These data demonstrate that the V2 vasopressin and the PGE1 receptors undergo homologous desensitization in the absence of cAMP-mediated phosphorylation and that this component is not required for vasopressin receptor internalization.  相似文献   

20.
Methods for the evaluation of competitive interactions at receptors associated with platelet activation and inhibition using aggregometry of human PRP have been developed. The evidence supports the suggestion that PGE1 and PGI2 share a common receptor for inhibition of platelet reactivity, but only a portion (if any) of the aggregation stimulation associated with PGE2 is the result of PGE2 binding (without efficacy) to this receptor. PGE2 (at .3-20 microM) is an effective antagonist of PGE1, PGI2, and PGD2 producing a shift of about one order of magnitude in the IC50-values obtained from complete aggregation inhibition dose response curves. The antagonism of PGD2 inhibition is particularly notable, 80 nM PGE2 levels are detectable. This and other actions of PGE2 indicate another platelet receptor for PGE2. PGE1 acts at both the PGE2 and PGI2 receptor. Other substances showing PGI2-like actions only at high doses (1-30 microM), display additive responses with PGI2 indicative of decreased affinity for the I2/E1 receptor and the absence of PGE2-like aggregation stimulation activity. PGI2 methyl ester has intrinsic inhibitory action not associated with in situ ester hydrolysis. The methyl ester is dissaggregatory showing particular specificity for inhibition of release and second wave aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号