首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The papillomavirus E1 and E2 proteins are both necessary and sufficient in vivo for efficient origin-dependent viral DNA replication. The ability of E1 and E2 to complex with each other appears to be essential for efficient viral DNA replication. In this study, we used the yeast two-hybrid system and in vitro binding assays to map the domains of the human papillomavirus type 16 (HPV16) E1 and E2 proteins required for complex formation. The amino-terminal 190-amino-acid domain of HPV16 E2 was both required and sufficient for E1 binding. The carboxyl-terminal 229 amino acids of E 1 were essential for binding E2, and the amino-terminal 143 amino acids of HPV16 E1 were dispensable. Although the ability of the E1 minimal domain (amino acids [aa] 421 to 649) to interact with E2 was strong at 4 degrees C, it was significantly reduced at temperatures above 25 degrees C. A larger domain of E1 from aa 144 to 649 bound E2 efficiently at any temperature, suggesting that aa 144 to 420 of E1 may play a role in the HPV16 E1-E2 interaction at physiological temperatures.  相似文献   

2.
Replication of human papillomavirus type11 (HPV11) requires both the E1 and the E2 proteins. E1 is structurally and functionally similar to SV40 large T-antigen and is a DNA helicase/NTPase that binds to the origin of replication and initiates viral DNA replication. The biochemical characterization of HPV E1 is incompletely documented in the literature in part because of difficulties in expressing and purifying the protein. Herein, we report a method for the overexpression of full-length, untagged E1 (73.5 kDa) in baculovirus-infected Trichoplusia ni insect cells and the purification to homogeneity using a two-step procedure. The purified protein is a nonspecific NTPase that hydrolyzes ATP, dATP, UTP, or GTP equally well. Point mutations were made in the putative NTPase domain to verify that the activities observed were encoded by E1. Purified mutant D523N had negligible ATPase and helicase activities but retained DNA-binding activity. Sedimentation equilibrium ultracentrifugation and glycerol gradient centrifugation demonstrated that the wild-type protein is primarily a hexamer in its purified form. Secondary structure determination by circular dichroism revealed a large percentage of alpha-helical structure consistent with secondary structure predictions. These data define a fundamental set of biochemical and kinetic parameters for HPV E1 which are a critical prerequisite to future mechanistic studies of the enzyme.  相似文献   

3.
4.
5.
6.
The L1 coat protein of human papillomavirus type 11 (HPV-11) was expressed in Sf-9 insect cells with the recombinant baculovirus vector Ac11L1. Viruslike particles (VLPs) were identified by electron microscopy in the nucleus and cytoplasm of Sf-9 cells infected with Ac11L1. The L1 protein was purified from Ac11L1-infected insect cells. The purified protein spontaneously assembled in vitro into various aggregates, including particles appearing similar to empty virions. Reaction of VLP-containing insect cell extracts with antisera directed against either denatured or nondenatured capsid epitopes in Western blot (immunoblot) and immuno-dot blot assays suggested that conformational epitopes present in native HPV-11 infectious virions were also present on the baculovirus-produced HPV-11 VLPs. Immuno-dot blot assays using human sera obtained from individuals with biopsy-proven condyloma acuminatum correlated closely with results previously obtained in HPV-11 whole virus particle-based enzyme-linked immunosorbent assays. These morphologic and immunologic similarities to native HPV-11 virions suggest that recombinant VLPs produced in the baculovirus system may be useful in seroepidemiology and pathogenesis studies of genital HPV infection and that they may also be potential candidates for vaccine development.  相似文献   

7.
Functional interactions between papillomavirus E1 and E2 proteins.   总被引:4,自引:3,他引:1       下载免费PDF全文
DNA replication of papillomaviruses requires the viral E1 and E2 proteins. These proteins bind cooperatively to the viral origin of replication (ori), which contains binding sites for both proteins, forming an E1-E2-ori complex which is essential for initiation of DNA replication. To map the domains in E2 that are involved in the interaction with E1, we have used chimeric bovine papillomavirus (BPV)/human papillomavirus type 11 (HPV-11) E2 proteins. The results from this study show that both the DNA binding domain and the transactivation domain from BPV E2 independently can interact with BPV E1. However, the roles of these two interactions are different: the interaction between E1 and the activation domain of E2 is necessary and sufficient for cooperativity in binding and for DNA replication; the interaction between E1 and the DNA binding domain of E2 is required only when the binding sites for E1 and E2 are adjacent to each other, and the function of this interaction appears to be to facilitate the interaction between E1 and the transactivation domain of E2. These results indicate that the cooperative binding of E1 and E2 to the BPV ori takes place via a novel two-stage mechanism where one interaction serves as a trigger for the formation of the second, productive, interaction between the two proteins.  相似文献   

8.
9.
Transient replication of human papillomavirus (HPV) type 18 DNA was shown to require the viral E1 and E2 proteins. A 108-bp sequence within the long control region (nucleotides 12 to 119) was sufficient to function as the origin, but maximal replication required a region of 177 bp from positions 7800 to 7857 and 1 to 119 of HPV-18. The E1 and E2 proteins of HPV-18 also supported transient replication of plasmids containing the origins of HPV-1a and bovine papillomavirus type 1 to low levels. Interestingly, the level of replication observed with the HPV-6b origin was higher than that obtained with the homologous HPV-18 origin.  相似文献   

10.
Many important functions have been attributed to the high-risk human papillomavirus (HPV) E6 and E7 proteins, including binding and degradation of p53 as well as interacting with Rb proteins. In contrast, the physiological roles of the low-risk E6 and E7 proteins remain unclear. Previous studies demonstrated that the high-risk E6 and E7 proteins also play roles in the productive life cycle by facilitating the maintenance of viral episomes (J. T. Thomas, W. G. Hubert, M. N. Ruesch, and L. A. Laimins, Proc. Natl. Acad. Sci. USA 96:8449-8454, 1999). In order to determine whether low-risk E6 or E7 is similarly necessary for the stable maintenance of episomes, HPV type 11 (HPV-11) genomes that contained translation termination mutations in E6 or E7 were constructed. Upon transfection into normal human keratinocytes, genomes in which E6 function was abolished were unable to be maintained episomally. Transfection of genomes containing substitution mutations in amino acids conserved in high- and low-risk HPV types suggested that multiple protein domains are involved in this process. Examination of cells transfected with HPV-11 genomes in which E7 function was inhibited were found to exhibit a more complex phenotype. At the second passage following transfection, mutant genomes were maintained as episomes but at significantly reduced levels than in cells transfected with the wild-type HPV-11 genome. Upon further passage in culture, however, the episomal forms of these E7 mutant genomes quickly disappeared. These findings identify important new functions for the low-risk E6 and E7 proteins in the episomal maintenance of low-risk HPV-11 genomes and suggest that they may act in a manner similar to that observed for the high-risk proteins.  相似文献   

11.
S L Chen  T Z Tsai  C P Han    Y P Tsao 《Journal of virology》1996,70(6):3502-3508
In this study, we investigated the structural basis of human papillomavirus type 11 (HPV-11) E5a transforming activity at the amino acid level. The effects of insertion, deletion , and substitution mutations on teh E5a transforming activity were determined by the assay of anchorage-independent growth. In the conserved Cys-X-Cys structure, substitution of Ser for Cys-73 resulted in indistinguishable transforming activity, whereas substitution of Ser for Cys-75 or Ser for both Cys-73 and Cys-75 retained 50 and 42% transformation, respectively. This suggests that Cys at position 75 may be important for transformation. Charge and structural changes at teh COOH termini of several mutants impaired transformation significantly, but those at the middle region did so only mildly. In addition, the 16,000-molecular-weight pore-forming protein (16K protein) is known to associate with BPV-1, HPV-6, and HPV-16 E5 proteins. In this study, we investigated the correlation between E5a-16K binding affinity and the transforming activity of E5a by the use of 11 E5a mutants. Results show that E5a and these 11 E5a mutants could bind to the 16K protein when these proteins were coexpressed in COS cells, suggesting that simple binding of the 16K protein by E5a may not be sufficient for cell transformation.  相似文献   

12.
Recombinant baculoviruses were constructed to express cDNAs encoding two distinct subtypes of human cAMP-specific phosphodiesterase (hPDE4A and hPDE4B). Infection of Spodoptera frugiperda insect cells with the appropriate recombinant baculoviruses resulted in high level production of biologically-active protein as measured by enzymatic activity and immunoblotting using subtype-specific anti-hPDE4 antisera. Both recombinant proteins showed catalytic activity with a low Km (~ 3 μM) for cAMP (with no cGMP hydrolyzing activity) and were inhibited by R-rolipram with apparent Kis of 0.38 and 0.25 μM, respectively. The recombinant enzymes also contained saturable, stereoselective and high-affinity rolipram-binding sites (Kd ~ 2 nM). Thus, insect cell-derived hPDE4s possess kinetic properties analogous to native enzymes as well as to recombinant enzymes produced in yeast.  相似文献   

13.
Deng W  Jin G  Lin BY  Van Tine BA  Broker TR  Chow LT 《Journal of virology》2003,77(19):10213-10226
The papillomavirus replicative helicase E1 and the origin recognition protein E2 are required for efficient viral DNA replication. We fused the green fluorescent protein (GFP) to the human papillomavirus type 11 E1 protein either in a plasmid with the E1 coding region alone (nucleotides [nt] 832 to 2781) (pGFP-11E1) or in a plasmid containing both the E1 and E2 regions (nt 2723 to 3826) and the viral origin of replication (ori) (p11Rc). The former supported transient replication of an ori plasmid, whereas the latter was a self-contained replicon. Unexpectedly, these plasmids produced predominantly a cytoplasmic variant GFP or a GFP-E1 E4 protein, respectively. The majority of the mRNAs had an intragenic or intergenic splice from nt 847 to nt 2622 or from nt 847 to nt 3325, corresponding to the E2 or E1 E4 messages. pGFP-11E1dm and p11Rc-E1dm, mutated at the splice donor site, abolished these splices and increased GFP-E1 protein expression. Three novel, alternatively spliced, putative E2 mRNAs were generated in higher abundance from the mutated replicon than from the wild type. Relative to pGFP-11E1, low levels of pGFP-11E1dm supported more efficient replication, but high levels had a negative effect. In contrast, elevated E2 levels always increased replication. Despite abundant GFP-E1 protein, p11Rc-E1dm replicated less efficiently than the wild type. Collectively, these observations show that the E1/E2 ratio is as important as the E1 and E2 concentrations in determining the replication efficiency. These findings suggest that alternative mRNA splicing could provide a mechanism to regulate E1 and E2 protein expression and DNA replication during different stages of the virus life cycle.  相似文献   

14.
15.
16.
The papillomavirus E2 regulatory proteins.   总被引:32,自引:0,他引:32  
  相似文献   

17.
Understanding the three-dimensional structure of G protein-coupled receptors (GPCRs) has been limited by the technical challenges associated with expression, purification, and crystallization of membrane proteins, and their low abundance in native tissue. In the first large-scale comparative study of GPCR protein production using recombinant baculovirus, we report the characterization of 16 human receptors. The GPCRs were produced in three insect cell lines and functional protein levels monitored over 72 h using radioligand binding assays. Different GPCRs exhibited widely different expression levels, ranging from less than 1 pmol receptor/mg protein to more than 250 pmol/mg. No single set of conditions was suitable for all GPCRs, and large differences were seen for the expression of individual GPCRs in different cell lines. Closely related GPCRs did not share similar expression profiles; however, high expression (greater than 20 pmol/mg) was achieved for over half the GPCRs in our study. Overall, the levels of protein production compared favourably to other published systems.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号