首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.Abbreviations 9-HFCA 9-hydroxyfluorenecarboxylic acid - NPA naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - IAA indole-3-acetic acid  相似文献   

2.
The shoots of a Japanese strain of morning glory ( Pharbitis nil  ) called 'Shidare-asagao' display agravitropic and weeping growth. It has been shown that this shoot agravitropism may be due to the defective differentiation of endodermal cells that contain statoliths. Roots of the weeping morning glory show normal responsiveness to gravity and the shoots are positively phototropic. Shoots of the morning glory cultivar Violet used as a wild type exhibited distinct circumnutation with circular movements that increase as the plants grow. In weeping morning glory, however, nutation was limited to slight back and forth or side to side movements. To determine whether endodermal cells participate in circumnutation through a function that is independent of their role in gravitropism, the nutational movements of various gravitropic mutants of Arabidopsis thaliana were compared. The inflorescences of wild-type Arabidopsis showed relatively large circular movements. Inflorescences of the pgm-1 mutant, which is defective in starch synthesis, showed reduced nutation. Even more seriously affected were the sgr1-1 / scr-3 and sgr7-1 / shr-2 mutants, which are defective in endodermal cell differentiation, and the auxin-resistant axr2-1 mutant showed no significant nutational movements at all. 1- N -naphthylphthalamic acid (NPA) could inhibit Violet circumnutation, supporting the notion that auxin participates in circumnutation. Thus, the gravitropic response is an essential component in plant shoot circumnutation. Endodermal cells are involved in such circumnutation possibly because of their role in inducing the gravitropic response.  相似文献   

3.
Role of gravitropic response in the dry matter production was explored using a near isogenic line pair of rice; Kamenoo and lazy-Kamenoo. Productive structures were quite different in plant with a lazy gene, lazy-Kamenoo from in Kamenoo. Heads were oriented in the surface of canopy in Kamenoo, while they distributed in all zones from the soil surface to the top of canopy in lazy-Kamenoo. The value of SLA, ratio of leaf area to leaf weight, was the same at the early stage of growth between Kamenoo and lazy-Kamenoo. However the value rapidly decreased in lazy-Kamenoo indicating that the thickness of leaves increased more rapidly with the advance of growth in plants with the lazy-gene. Tiller shoots of lazy-Kamenoo, showed prostrate or spreading growth pattern. This is probably due to the inability or reduced responsibility to gravity since they showed only reduced response to gravistimulation in 12-and 13-leaf stage and almost no response was detected in 14-leaf stage. On the other hand, Kamenoo well responded to gravistimulation in all growth stages tested. Thus, the difference in productive structure in two near isogenic lines was explained, at least in part, by their difference in gravitropic response.  相似文献   

4.
Nick P  Schafer E 《Planta》1988,173(2):213-220
The influence of gravitropic stimulation upon blue-light-induced first positive phototropism for stimulations in the same (light source and center of gravity opposite to each other) and in opposing directions was investigated in maize cole-optiles by measuring fluence-response patterns. As a result of gravitropic counterstimulation, phototropic bending was transient with maximum curvature occurring 100 min after stimulation. On a horizontal clinostat, however, the seedlings curved for 20 h. Gravistimulation in the opposite direction acted additively upon blue-light curvature. Gravistimulation in the same direction as phototropic stimulation produced a complex behaviour deviating from simple additivity. This pattern can be explained by a gravitropically mediated sensitization of the phototropic reaction, an optimal dependence of differential growth on the sum of photo-and gravistimulation, and blue-light-induced inhibition of gravitropic curvature at high fluences. These findings indicate that several steps of photo-and gravitransduction are separate. Preirradiation with red light desensitized the system independently of applied gravity-treatment, indicating that the site of red-light interaction is common to both transduction chains.Abbreviations BL blue light - G+ stimulation by light and gravity in the same direction (i.e. light source and center of gravity opposite to each other) - G- stimulation by light and gravity in opposing directions  相似文献   

5.
H Fukaki  H Fujisawa    M Tasaka 《Plant physiology》1996,110(3):933-943
We have characterized the gravitropic response of inflorescence stems in Arabidopsis thaliana. When the inflorescence stems were placed horizontally, they curved upward about 90 degrees within 90 min in darkness at 23 degrees C, exhibiting strong negative gravitropism. Decapitated stem segments (without all flowers, flower buds, and apical apices) also showed gravitropic responses when they included the elongation zone. This result indicates that the minimum elements needed for the gravitropic response exist in the decapitated inflorescence stem segments. At least the 3-min gravistimulation time was sufficient to induce the initial curvature at 23 degrees C after a lag time of about 30 min. In the gravitropic response of inflorescence stems, (a) the gravity perception site exists through the elongating zone, (b) auxin is involved in this response, (c) the gravitropic curvature was inhibited at 4 degrees C but at least the gravity perception step could occur, and (d) two curvatures could be induced in sequence at 23 degrees C by two opposite directional horizontal gravistimulations at 4 degrees C.  相似文献   

6.
Nick P  Sailer H  Schafer E 《Planta》1990,181(3):385-392
The interaction of photo- and gravitropic stimulation was studied by analysing the curvature of maize (Zea mays L.) coleoptiles subjected to rotation on horizontal clinostats. Gravitropic curvature in different directions with respect to the stimulation plane was found to be transient. This instability was caused by an increasing deviation of response direction from the stimulation plane towards the caryopsis. The bending angle as such, however, increased steadily. This reorientation of the gravitropic response towards the caryopsis is thought to be caused by the clinostat-elicited nastic curvature found in maize coleoptiles. In contrast, the response to phototropic stimulation was stable, in both, orientation and curving. Although stimulation by gravity was not capable of inducing a stable tropistic response, it could inhibit the response to opposing phototropic stimulation, if the counterstimulation was given more than 90 min after the onset of gravistimulation. For shorter time intervals the influence of the phototropic stimulus obscured the response to the first, gravitropic stimulation. For time intervals exceeding 90 min, however, the phototropic effects disappeared and the response was identical to that for gravity stimulation alone. This gravity-induced inhibition of the phototropic response was confined to the plane of gravity stimulation, because a phototropic stimulation in the perpendicular direction remained unaffected, irrespective of the time interval between the stimulations. This concerned not only the stable phototropic curving, but also the capacity of the phototropic induction to elicit a stable directional memory as described earlier (P. Nick and F. Schäfer, 1988b, Planta 175, 380–388). This was tested by a second bluelight pulse opposing the first. It is suggested that gravity, too, can induce a directional memory differing from the blue-light elicited memory. The mechanisms mediating gravi- and phototropic directional memories are thought to branch off the respective tropistic signal chains at a stage where photo- and gravitropic transduction are still separate.This work was supported by the Deutsche Forschungsgemeinschaft and a grant of the Studienstiftung des Deutschen Volkes to P. Nick.  相似文献   

7.
G. Roblin  P. Fleurat-Lessard 《Planta》1987,170(2):242-248
When the leaves of Mimosa pudica are changed from their normal position in the gravitational field, they perform reversible compensatory movements by means of pulvini. These movements are not the result of growth processes but involve reversible turgor variations. These variation are concomitant with ion migrations within pulvini: during the gravitropic movement, K+ and Cl- shift towards the adaxial half of the motor organ whereas Ca2+ shifts towards the abaxial half. Compounds known to affect K+ transport, tetraethylammonium chloride and valinomycin, do not hinder the gravitropic movement but inhibit strongly the seismonastic reaction. The same general result is obtained with compounds affecting anion transport, disulfonic stilbenes and 9-anthracene carboxylic acid. Calcium chelators inhibit the gravitropic movement more efficiently than the seismonastic reaction and the calcium ionophore A 23 187 increases both movements. The data obtained with these various compounds indicate that ions do not have the same functional importance in the regulation of the two different pulvinar movements.Abbreviations abx abaxial half of the pulvinus - adx adaxial half of the pulvinus - 9-AC 9-anthracene carboxylic acid - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid - TEA tetraethylammonium chloride  相似文献   

8.
Plants sense positional changes relative to the gravity vector. To date, the signaling processes by which the perception of a gravistimulus is linked to the initiation of differential growth are poorly defined. We have investigated the role of inositol 1,4,5-trisphosphate (InsP(3)) in the gravitropic response of oat (Avena sativa) shoot pulvini. Within 15 s of gravistimulation, InsP(3) levels increased 3-fold over vertical controls in upper and lower pulvinus halves and fluctuated in both pulvinus halves over the first minutes. Between 10 and 30 min of gravistimulation, InsP(3) levels in the lower pulvinus half increased 3-fold over the upper. Changes in InsP(3) were confined to the pulvinus and were not detected in internodal tissue, highlighting the importance of the pulvinus for both graviperception and response. Inhibition of phospholipase C blocked the long-term increase in InsP(3), and reduced gravitropic bending by 65%. Short-term changes in InsP(3) were unimpaired by the inhibitor. Gravitropic bending of oat plants is inhibited at 4 degrees C; however, the plants retain the information of a positional change and respond at room temperature. Both short- and long-term changes in InsP(3) were present at 4 degrees C. We propose a role for InsP(3) in the establishment of tissue polarity during the gravitropic response of oat pulvini. InsP(3) may be involved in the retention of cold-perceived gravistimulation by providing positional information in the pulvini prior to the redistribution of auxin.  相似文献   

9.
The observation that a starchless mutant (TC7) of Arabidopsis thaliana (L.) Heynh. is gravitropic (T. Caspar and B.G. Pickard, 1989, Planta 177, 185–197) raises questions about the hypothesis that starch and amyloplasts play a role in gravity perception. We compared the kinetics of gravitropism in this starchless mutant and the wild-type (WT). Wild-type roots are more responsive to gravity than TC7 roots as judged by several parameters: (1) Vertically grown TC7 roots were not as oriented with respect to the gravity vector as WT roots. (2) In the time course of curvature after gravistimulation, curvature in TC7 roots was delayed and reduced compared to WT roots. (3) TC7 roots curved less than WT roots following a single, short (induction) period of gravistimulation, and WT, but not TC7, roots curved in response to a 1-min period of horizontal exposure. (4) Wild-type roots curved much more than TC7 roots in response to intermittent stimulation (repeated short periods of horizontal exposure); WT roots curved in response to 10 s of stimulation or less, but TC7 roots required 2 min of stimulation to produce a curvature. The growth rates were equal for both genotypes. We conclude that WT roots are more sensitive to gravity than TC7 roots. Starch is not required for gravity perception in TC7 roots, but is necessary for full sensitivity; thus it is likely that amyloplasts function as statoliths in WT Arabidopsis roots. Furthermore, since centrifugation studies using low gravitational forces indicated that starchless plastids are relatively dense and are the most movable component in TC7 columella cells, the starchless plastids may also function as statoliths.Abbreviations S2 story two - S3 story three - WT wild-type  相似文献   

10.
We have studied hydrotropism and its interaction with gravitropism in agravitropic roots of a pea mutant and normal roots of peas (Pisum sativum L.) and maize (Zea mays L.). The interaction between hydrotropism and gravitropism in normal roots of peas or maize were also examined by nullifying the gravitropic response on a clinostat and by changing the stimulus-angle for gravistimulation. Depending on the intensity of both hydrostimulation and gravistimulation, hydrotropism and gravitropism of seedling roots strongly interact with one another. When the gravitropic response was reduced, either genetically or physiologically, the hydrotropic response of roots became more unequivocal. Also, roots more sensitive to gravity appear to require a greater moisture gradient for the induction of hydrotropism. Positive hydrotropism of roots occurred due to a differential growth in the elongation zone; the elongation was much more inhibited on the moistened side than on the dry side of the roots. It was suggested that the site of sensory perception for hydrotropism resides in the root cap, as does the sensory site for gravitropism. Furthermore, an auxin inhibitor, 2,3,5-triiodobenzoic acid (TIBA), and a calcium chelator, ethyleneglycol-bis-(-aminoethylether)-N,N,N,N- tetraacetic acid (EGTA), inhibited both hydrotropism and gravitropism in roots. These results suggest that the two tropisms share a common mechanism in the signal transduction step.  相似文献   

11.
The angle at which an organ is maintained by gravit-ropism is characteristic of the organ, its developmental state and the prevailing environmental conditions. We propose that this angle be called the gravitropic set-point angle (GSA), defined as the angle with respect to the gravity vector (with a vertically downward orientation being 0°) at which an organ is maintained as a consequence of gravitropism. Studies of the gravitropic behaviour of organs from trailing plants show that the GSA is subject to developmental regulation. Depending on the developmental age and prevailing environmental conditions, the GSA of an organ can he set at any value between 0° and 180° The previously reported reversal of the sign of the gravitropic response in such organs, whether this is brought about developmentally or induced by light, represents the change from one common extreme (GSA = 180°, conventionally referred to as negative orthogravitropism) to another (GSA = 0°, or positive orthogravitropism). The concept of a variable gravitropic set-point offers a more unified view of all forms of gravitropic behaviour than has been advanced previously, and places a new constraint on models of gravitropism. Current models of gravitropism appear to be unable to explain either the ability of organs to change their orientation with respect to gravity as they develop, or the re-orientation that can be observed when some organs are exposed to new environmental conditions.  相似文献   

12.
Inositol 1,4,5-trisphosphate (InsP3) has been implicated in the early signaling events of plants linking gravity sensing to the initiation of the gravitropic response. However, at present, the contribution of the phosphoinositide signaling pathway in plant gravitropism is not well understood. To delineate the role of InsP3 in plant gravitropism, we generated Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme that specifically hydrolyzes InsP3. The transgenic plants show no significant differences in growth and life cycle compared to wild-type plants, although basal InsP3 levels are reduced by greater than 90% compared to wild-type plants. With gravistimulation, InsP3 levels in inflorescence stems of transgenic plants show no detectable change, whereas in wild-type plant inflorescences, InsP3 levels increase approximately 3-fold within the first 5 to 15 min of gravistimulation, preceding visible bending. Furthermore, gravitropic bending of the roots, hypocotyls, and inflorescence stems of the InsP 5-ptase transgenic plants is reduced by approximately 30% compared with the wild type. Additionally, the cold memory response of the transgenic plants is attenuated, indicating that InsP3 contributes to gravisignaling in the cold. The transgenic roots were shown to have altered calcium sensitivity in controlling gravitropic response, a reduction in basipetal indole-3-acetic acid transport, and a delay in the asymmetric auxin-induced beta-glucuronidase expression with gravistimulation as compared to the controls. The compromised gravitropic response in all the major axes of growth in the transgenic Arabidopsis plants reveals a universal role for InsP3 in the gravity signal transduction cascade of plants.  相似文献   

13.
The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so‐called ‘static’ or ‘settled’ statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom‐designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild‐type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1  g . sgr2 mutants were able to sense and respond to gravity under 30  g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity‐driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1  g . We found that the correlation between hypergravity‐induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild‐type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the ‘bottom’ of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1  g .  相似文献   

14.
Braun M  Limbach C 《Protoplasma》2006,229(2-4):133-142
Gravitropically tip-growing rhizoids and protonemata of characean algae are well-established unicellular plant model systems for research on gravitropism. In recent years, considerable progress has been made in the understanding of the cellular and molecular mechanisms underlying gravity sensing and gravity-oriented growth. While in higher-plant statocytes the role of cytoskeletal elements, especially the actin cytoskeleton, in the mechanisms of gravity sensing is still enigmatic, there is clear evidence that in the characean cells actin is intimately involved in polarized growth, gravity sensing, and the gravitropic response mechanisms. The multiple functions of actin are orchestrated by a variety of actin-binding proteins which control actin polymerisation, regulate the dynamic remodelling of the actin filament architecture, and mediate the transport of vesicles and organelles. Actin and a steep gradient of cytoplasmic free calcium are crucial components of a feedback mechanism that controls polarized growth. Experiments performed in microgravity provided evidence that actomyosin is a key player for gravity sensing: it coordinates the position of statoliths and, upon a change in the cell's orientation, directs sedimenting statoliths to specific areas of the plasma membrane, where contact with membrane-bound gravisensor molecules elicits short gravitropic pathways. In rhizoids, gravitropic signalling leads to a local reduction of cytoplasmic free calcium and results in differential growth of the opposite subapical cell flanks. The negative gravitropic response of protonemata involves actin-dependent relocation of the calcium gradient and displacement of the centre of maximal growth towards the upper flank. On the basis of the results obtained from the gravitropic model cells, a similar fine-tuning function of the actomyosin system is discussed for the early steps of gravity sensing in higher-plant statocytes.  相似文献   

15.
Björkman T  Cleland RE 《Planta》1988,176(4):513-518
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53° in 5 h) than in intact roots (82°), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.Abbreviations df degrees of freedom - IAA indole-3-acetic acid  相似文献   

16.
Calmodulin, a primary plant calcium receptor, is known to be intimately involved with gravitropic sensing and transduction. Using the calmodulin-binding inhibitors trifluoperazine, W7 and calmidazolium, gravitropic curvature of Arabidopsis thaliana (L.) Heynh, ecotype Landsberg, roots was separable into two phases. Phase I was detected at very low concentrations (0.01 μM) of trifluoperazine and calmidazolium, did not involve growth changes, accounted for about half the total curvature of the root and may represent the specific contribution of the cap to gravity sensing. Phase II commenced around 1.0 μM and involved inhibition of both growth and curvature. The agr-3 mutant exhibited a reduced gravitropic response and was found to lack phase I curvature, suggesting that the mutation alters either use or expression of calmodulin. The sequences of wild-type and agr-3 calmodulin (CaM-1) cDNAs, which are root specific were completely determined and found to be identical. Upon gravitropic stimulation, wild-type Arabidopsis seedlings increased calmodulin mRNA levels by threefold in 0.5 h. On the other hand, gravitropic stimulation of agr-3 decreased calmodulin mRNA accumulation. The possible basis of the two phases of curvature is discussed and it is concluded that agr-3 has a lesion located in a general gravity transmission sequence, present in many root cells, which involves calmodulin mRNA accumulation.  相似文献   

17.
Gravitropism and nutation in the stems of dark-grown, seedling peas (Pisum sativum L. cv. Alaska) were recorded on time-lapse photographs made with photomorphogenetically inactive light. Although gravitropism and nutation have been connected by several different theories in the past, our experiments indicate that the two processes are in fact dissociable. The evidence is as follows: (a) Nutational patterns are asymmetric. There is much greater amplitude of oscillation in the plane parallel () to the plane of the apical hook than in the plane perpendicular (), yet the average gravitropic response is equal in these two planes. (b) Brief red light irradiation given 16 to 24 hours before observation greatly increases the amplitude of nutation in the -plane, but has no influence on the kinetics of gravitropic response. (c) An inhibitor of auxin transport, α-naphthylphthalamic acid, strongly inhibits nutation at 5 micromolar but affects gravitropism only at higher concentrations. (d) Nutation is also strongly inhibited by removal of the apical bud, but gravitropism is unaffected. (e) The period of nutation does not exhibit a constant relationship to the response time of gravitropism. The above evidence is inconsistent with theories that gravitropism is an asymmetrically modified nutation or, alternatively, that nutational oscillations result in a simple fashion from gravitropic overshoots. The evidence is consistent with, although not proof of, autonomous factors such as an endogenous rhythm of growth as the cause of nutation in pea stems. However, gravity and nutation do interact. Nutation in a population of seedlings can be synchronized and brought into phase by a single gravitropic induction. Furthermore, the response time and initial rate of gravitropic curvature depend to some extent on the phase of nutational curvature at which gravitropic induction is begun.  相似文献   

18.
Gravitropic response is a plant growth response against changing its position relative to the gravity vector. In the present work we studied actin cytoskeleton rearrangements during Arabidopsis root gravitropic response. Two alternative approaches were used to visualize actin microfilaments: histochemical staining of fixed roots with rhodamine-phalloidin and live imaging of microfilaments in GFP-fABD2 transgenic plants. The curvature of actin microfilaments was shown to be increased within 30–60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. Methodological issues of actin cytoskeleton visualization in the study of Arabidopsis root gravitropic response, as well as the role of microfilaments at the stages of gravity perception, signal transduction and gravitropic bending formation are discussed. It is concluded that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed.  相似文献   

19.
The gynophore of the peanut plant (Arachis hypogaea) is a specialized organ that carries and buries the fertilized ovules into the soil in order for seed and fruit development to occur underground. The rates of growth of vertically and horizontally oriented gynophores were measured using a time-lapse video imaging system. We found that the region of maximum extension growth due to elongation (termed the Central Elongation Zone) is located on average at 2-5 mm from the tip. In the first 0-4 h after horizontal reorientation (gravistimulation), new zones of growth emerge on the upper surface, while the elongation zone of the lower side decreases in size and magnitude. Four to six hours after reorientation the zones of maximum growth are almost equal in size and location on the upper and lower sides. The growth rate and the gravitropic response decreased dramatically, upon the excision of the ovule region (terminal 1.5 mm), but a gravitropic growth response could be restored by applying the auxin indole-3-acetic acid exogenously to the excised tip. The addition of napthylphthalamic acid (an auxin transport inhibitor) at the ovule region allowed some growth to occur, but the gynophores do not respond normally to gravity, upon horizontal reorientation. We discuss the role of auxin in the gravitropic response of the gynophore.  相似文献   

20.
The microtubule reorientation during the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes was investigated. Using indirect immunofluorescence methods, we examined changes in microtubule orientation in the cortex, endodermis and pith tissues of the shoot bending zone, in response to gravistimulation. Our results show that dense microtubule arrays were visible throughout the cortical, endodermal and pith shoot tissues, and that the transverse orientation of the microtubules (perpendicular to the growth axis) was specifically associated with the shoot growing bending zone. Microtubules showed gravity-induced kinetics of changes in their orientation, which occurred only in the upper stem flank and preceded shoot bending. While this observation, that the gravity-induced microtubule orientation precedes bending, was previously reported only in special above-ground organs such as coleoptiles and hypocotyls, our present study is the first to show that such patterns of change occur in mature flowering shoots. These changes were exhibited first in the upper flank of the cortex and then in the upper flank of the endodermis. No changes in microtubule orientation were observed in the cortex or endodermis tissues of the lower flanks or in the pith, suggesting that these tissues continue to grow during shoot gravistimulation. Our results imply that microtubules may be involved in growth cessation of the upper shoot flank occurring during the gravitropic bending of snapdragon cut spikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号