首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phage λ, like a number of other large DNA bacterio-phages and the herpesviruses, produces concatemeric DNA during DNA replication. The concatemeric DNA is processed to produce unit-length, virion DNA by cutting at specific sites along the concatemer. DNA cutting is coordinated with DNA packaging, the process of translocation of the cut DNA into the preformed capsid precursor, the prohead. A key player in the λ DNA packaging process is the phage-encoded enzyme terminase, which is involved in (i) recognition of the concatemeric λ DNA; (ii) initiation of packaging, which includes the introduction of staggered nicks at cosN to generate the cohesive ends of virion DNA and the binding of the prohead; (iii) DNA packaging, possibly including the ATP-driven DNA translocation; and (iv) following translocation, the cutting of the terminal cosN lo complete DNA packaging. To one side of cosN is the site cosB, which plays a role in the initiation of packaging; along with ATP, cosB stimulates the efficiency and adds fidelity to the endo-nuclease activity of terminase in cutting cosN. cosB is essential for the formation of a post-cleavage complex with terminase, complex I, that binds the prohead, forming a ternary assembly, complex II. Terminase interacts with cosN through its large subunit, gpA, and the small terminase subunit, gpNul, interacts with cosB. Packaging follows complex II formation. cosN is flanked on the other side by the site cosQ, which is needed for termination, but not initiation, of DNA packaging. cosQ is required for cutting of the second cosN, i.e. the cosN at which termination occurs. DNA packaging in λ has aspects that differ from other λ DNA transactions. Unlike the site-specific recombination system of λ, for DNA packaging the initial site-specific protein assemblage gives way to a mobile, translocating complete, and unlike the DNA replication system of λ, the same protein machinery is used for both initiation and translocation during λ DNA packaging.  相似文献   

2.
The functions of most of the 10 genes involved in phage λ capsid morphogenesis are well understood. The function of the FI gene is one of the exceptions. Mutants in FI fail to mature and package DNA. The gene product (gpFI) seems to act as a catalyst for the formation of an intermediate in capsid assembly called complex II, which contains a procapsid (an empty capsid precursor), terminase (the enzyme that cleaves the DNA precursor and packages it into the procapsid) and DNA. The mechanism for this stimulation remains unknown. It has also been reported that gpFI appeared to stimulate terminase-mediated cos cleavage, in the absence of procapsids, by increasing enzyme turnover. In comparison with other head-gene mutants, FI mutants are leaky, producing approx. 0.1 phage per infected cell. Some second-site revertants of FI ? phages, called ‘fin’, that bypass the necessity for gpFI, have been isolated and found to harbour a mutation in the genes that code for the two subunits of terminase. In the course of mapping additional fin mutants, it was discovered that some mapped outside the terminase genes. To localize the mutations, restriction fragments of fin mutant DNAs were subcloned into plasmids and their ability to contribute to fin function was determined by marker-rescue analysis. The location of the fin mutation was further delineated by deletion analysis of a plasmid that was positive for fin. This showed that some fin mutations mapped to a region comprising genes E, D and a portion of C. The sequencing of this entire region in several fin isolates showed that the fin mutations are clustered in a small region of gene E corresponding to a portion of 26 amino acid residues of the coat protein (gpE). We have called this region of the protein the EFi domain. All the mutations result in an increase in positive charge relative to the wild-type protein. These results suggest that DNA maturation and packaging are in part controlled by an interaction between gpFI and capsid gpE.  相似文献   

3.
The DNA of wild-type Streptomyces lividans 66 is degraded during electrophoresis in buffers containing traces of ferrous iron. S. lividans ZX1, a mutant selected for resistance to DNA degradation, simuiltaneously became sensitive to φHAU3, a wide-host-range temperate bacteriophage. A DNA fragment conferring φHAU3 resistance was cloned; it contains a phage resistance gene whose deduced amino acid sequence is similar to the phage λ Ea59 endonuclease. The S. lividansφHAU3 resistance does not seem to be a classical restriction-modification system, because no host-modified phages able to propagate on the wild-type strain could be isolated. The cloned fragment did not make the host DNA prone to degradation during electrophoresis, indicating that the two phenotypes are controlled by different genes which were deleted together from the chromosome of ZX1.  相似文献   

4.
Bacteriophage P22 and λ are related bacteriophages with similar gene organizations. In λ the cII-dependent PI promoter is responsible for λint gene expression. The only apparent counterpart to PI in P22 is oriented in the opposite direction, and cannot transcribe the P22 int gene. We show that this promoter, called Pal, is active both in vivo and in vitro, and is dependent upon the P22 cII-like gene, called c1. We have also determined the DNA sequence of a 3.3 kb segment that closes the gap between previously reported sequences to give a continuous sequence between the P22 pL promoter and the int gene. The newly determined sequence is densely packed with genes from the pL direction, and the proteins predicted by the sequence show excellent correlation with the proteins mapped by Youderian and Susskind in 1980. However, the sequence contains no apparent genes in the opposite (pal) direction, and no additional binding motifs for the P22 c1 protein. We conclude that int gene expression in P22 is regulated by a different mechanism than in λ.  相似文献   

5.
The essential replication protein encoded by gene O of bacteriophage λ (O-λ) is one of the major polypeptides produced in vitro in a DNA-dependent protein synthesizing system with λ DNA as template (Yates et al., 1977). We have used this system to identify the proteins encoded by lambdoid phages φ80 and 82 and equivalent in function to O-λ. The O protein of each phage type differs slightly in polypeptide molecular weight. Hybrid λ-φ80 and λ-82 phages derived by recombination within gene O direct synthesis of hybrid O proteins with the aminoterminal segment characteristic of one parent, and the carboxyl-terminal segment characteristic of the other. Differences in structure among O-λ, O-80 and O-λ82 segregate together with specificity determinants for interactions between the O protein and the control site ori, and between the O protein and the product of replication gene P. The coding region for the O protein includes ori.  相似文献   

6.
DNA maturation in bacteriophage λ is the process by which the concatemeric precursor DNA is cleaved at sites called cos to generate mature λ DNA molecules. These DNA molecules are then packaged into procapsids, the empty capsid precursors. The enzyme that catalyses these events is λ DNA terminase. It is composed of two subunits, made of 181 and 641 amino acids, the products of genes Nu1 and A, respectively. The product of the FI gene (gpFI ) stimulates the formation of an intermediate in capsid assembly called complex II, which contains a procapsid, terminase and DNA. The mechanism of stimulation remains unknown. It has been suggested that gpFI may also stimulate terminase-mediated cos cleavage, in the absence of procapsids, by increasing enzyme turnover. Mutants in FI fail to mature and package DNA but, in comparison with other capsid gene mutants, FI mutants are leaky. Second site mutants of FI phages, called ‘fin’ (for FI independence), bypass the necessity for gpFI. These mutants were originally localized to the region of Nu1 and A and are of two classes: finA includes those that induce the synthesis of fourfold more gene A product (gpA ) than wild-type phages, and finB includes those that produce normal amounts of gpA. Whereas all finA mutants analysed map to Nu1, finB mutants have been found both in E and in Nu1. The existence of E mutants able to bypass the necessity for gpFI in vivo shows that gpE and gpFI interact, directly or indirectly. Here we have analysed and sequenced two finA mutants and one finB mutant. All of these map in Nu1. Of the two finA mutants, one corresponds to an Ala163Ser change and the other is a silent mutation. It is likely that the finA mutations alter mRNA conformation in a manner that results in an increase in the efficiency of A mRNA translation. The fourfold increase in gpA synthesis translates into a 10-fold increase in terminase activity. These results show that terminase overproduction is sufficient to bypass the necessity for gpFI and that such an overproduction can be achieved by changes in the efficiency of translation of A due to subtle changes in the sequence upstream of the gene. The finBcs103 mutation is a His-87→Tyr change in Nu1. Therefore, an alternative way in which to bypass the requirement for gpFI involves an alteration in the structure of gpNu1. It is likely that the altered gpNu1 would increase cleavage and packaging efficiency directly or indirectly. We have determined that DNA cleavage in vivo does not occur in the absence of gpFI. Therefore it seems that gpFI somehow facilitates an otherwise latent capacity of terminase to autoactivate its nucleolytic activity.  相似文献   

7.
The genetic elements which control autonomous DNA replication differ in functional specificity among coliphage λ, the coliphages φ80 and 82, and the Salmonella phage P22. Hybrid phages derived by genetic recombination between λ and each of these related phages have been used to define and to localize specificity determinants for DNA replication.In λ-P22 hybrid phages (Hilliker & Botstein, 1976) the replication control elements segregate as an intact unit. By contrast, some viable λ-φ80 and λ.82 hybrid phages arise by recombination within the replication control region, in a small interval inside structural gene O. From the properties of such hybrid phages, we infer that the O gene product of λ and the functionally equivalent proteins of φ80 and 82 each interact with a specific nucleotide sequence in the cognate ori site, the DNA target for control of the origin of replication. With respect to this interaction, both the O products and the receptor sequences within ori show stringent type specificity. The donor and receptor specificity determinants for the ori-O interaction lie within an interval of less than 400 base-pairs.The O gene product also interacts with the product of replication gene P (Tomizawa, 1971). The O-P interaction displays limited type specificity; the P-like protein of φ80 can function together with the O protein of λ, but the P protein of λ cannot function with the O-like protein of φ80. The specificity determinants for the O-P interaction can be separated from those for the ori-O interaction.We propose that a chain of interactions between ori, O product, P product, and replication functions of the bacterial host, Escherichia coli, controls specific template selection and the assembly of the essential replication apparatus in the initiation of λ DNA replication.  相似文献   

8.
9.
10.
Induction of bacteriophage λ in the presence of a P2 prophage results in inactivation of cellular transfer RNA, inhibition of amino acid and uridine incorporation in the host, as well as inhibition of phage replication. A red gam double mutation allows λ to escape from interference, and a mutation in gene O or P abolishes the effects on the host.It is shown here that phage and plasmid DNA extracted from cells undergoing P2-λ interference are still active in a transfection assay. Mutations in bacterial gene dna B or in phage site ori suppress the inhibition of amino acid incorporation, whereas genes dnaE and dna G have no such effect. Derepression of bacterial exonuclease VIII totally suppresses the interference, and mutations in genes recA and lexA, which control the SOS functions, suppress it partially if the λ phage is red+. Our results suggest that P2-λ interference is due to the action of old at an early step of the initiation of λ replication.  相似文献   

11.
Requirement for maturation of Escherichia coli bacteriophage lambda   总被引:6,自引:0,他引:6  
During infection a λ phage that is incapable of DNA replication requires recombination for maturation. If two prophages are situated in tandem, this requirement for DNA replication and recombination is bypassed. In physical experiments using the DNA cutting assay of Freifelder et al. (1973), the DNA of a sex factor containing one or two prophages defective in both excision and DNA replication is cut efficiently only when two prophages are in tandem. We interpret this to mean that λ can only be matured from a structure of greater than unit length, and hypothesize that the structure must contain two joined ends (AR-joints).  相似文献   

12.
Transcription antitermination: the λ paradigm updated   总被引:1,自引:1,他引:0  
  相似文献   

13.
Petit λ is an empty spherical shell of protein which appears wherever λ grows. If phage DNA and petit λ are added to a cell-free extract of induced lysogenic bacteria, then phage particles are formed that contain the DNA and protein from the petit λ. Petit λ is transformed, without dissociation, into a phage head by addition of DNA and more phage proteins.The products of ten genes, nine phage and one host, are required for λ head assembly. Among these, the products of four phage genes, E, B, C, and Nu3 and of the host gene groE are involved in the synthesis of petit λ, consequently these proteins are dispensable for head assembly in extracts to which petit λ has been added. The products of genes A and D allow DNA to combine with petit λ to form a head that has normal morphology. In an extract, DNA can react with A product and petit λ to become partially DNAase-resistant, as if an unstable DNA-filled intermediate were formed. ATP and spermidine are needed at this stage. This intermediate is subsequently stabilized by addition of D product. The data suggest a pathway for head assembly.  相似文献   

14.
Origin and sequence of chromosome replication in Escherichia coli   总被引:59,自引:0,他引:59  
Two methods have been used to determine the origin and direction of chromosome replication in Escherichia coli: gradient of marker frequency and sequence of replication in synchronized cultures. In both cases, DNA-DNA hybridization was used to assay for gene dosage. A series of isogenic strains were made lysogenic for phage λ and for phage Mu-1, with phage Mu-1 in a different chromosomal location in each strain. In a first group of experiments, DNA from exponential cultures of the various strains was extracted, denatured, immobilized on filters and hybridized against a mixture of differentially labeled phage λ and phage Mu-1 DNA. This was done for several culture conditions. The ratio of hybridization Mu-1/λ gives a measurement of the dosage of the chromosome region where phage Mu-1 is integrated. A plot of this ratio versus map position reflects the marker frequency distribution.  相似文献   

15.
Covalent circular λ DNA molecules produced in Escherichia coli (λ) host cells by infection with labeled λ bacteriophages are cut following superinfection with λ phages damaged by exposure to psoralen and 360 nm light. This cutting of undamaged covalent circular molecules is referred to as “cutting in trans”, and could be a step in damage-induced recombination (Ross &; Howard-Flanders, 1977). Similar experiments performed with the temperate phage 186, which is not homologous with phage λ, showed cutting in trans and damage-induced recombination to occur in homoimmune crosses with phage 186 also. Double lysogens carrying both λ and 186 prophages were used in a test for specificity in cutting in trans and in damage-induced recombination. The double lysogens were infected with 3H-labeled 186 and 32P-labeled λ phages. When these doubly infected lysogens containing covalent circular phage DNA molecules of both types were superinfected with psoralen-damaged 186 phages and incubated, the covalent circular 186 DNA was cut, while λ DNA remained intact. Similarly, superinfection with damaged λ phages caused λ, but not 186, DNA to be cut. Evidently, cutting in trans was specific to the covalent circular DNA homologous to the DNA of the damaged phages. Homoimmune phage-prophage genetic crosses were performed in the double lysogenic host infected with genetically marked λ and 186 phages. Damage-induced recombination was observed in this system only between the damaged phage DNA and the homologous prophage, none being detected between other homolog pairs present in the same cell. This result makes it unlikely that the damaged phage DNA induces a general state of enhanced strand cutting and genetic recombination affecting all homolog pairs present in the host cell. The simplest interpretation of the specificity in cutting and in recombination is as follows. When they have been incised, the damaged phage DNA molecules are able to pair directly with their undamaged covalent circular homologs. The latter molecules are cut in a recA + -dependent reaction by a recombination endonuclease that cuts the intact member of the paired homologs.  相似文献   

16.
By selecting survivors of λ phage infection, mutants of Escherichia coli K12 that block reproduction cycle of the phage have been isolated. Fourteen of these phage-tolerant mutants (lam mutants) were chosen and characterized biochemically and genetically. It was shown that these mutants were tolerant to infection by all the lambdoid phages, except for few cases, but they were susceptible to infection by a non-lambdoid temperate phage (φ299), P1 or T phages. The mutants can be divided into at least three groups: (1) A mutant (lam 16) strain that seems to block normal penetration of phage DNA: (2) Three mutant (lam 64, lam 67 and lam 71) strains that block an “early” step(s) of phage growth, including phage DNA synthesis: (3) Six mutant (lam 24, lam 25, lam 26, lam 27, lam 646 and lam 6) strains that block normal functioning of the gene E products and produce unusual head structures. Some lambdoid phages and λ mutants that overcome the interference by the lam mutations have been obtained, and were used as tools for characterizing the host mutations. Two (lam 12 and lam 13) mutant strains and one (lam 1) mutant were inferred as affecting the expression of “late” genes, and early gene, respectively, by this test.  相似文献   

17.
18.
The life cycle of phage λ has been studied extensively. Of particular interest has been the process leading to the decision of the phage to switch from lysogenic to lytic cycle. The principal participant in this process is the λcI repressor, which is cleaved under conditions of DNA damage. Cleaved λcI no longer acts as a repressor, allowing phage λ to switch from its lysogenic to lytic cycle. The well‐known mechanism responsible for λcI cleavage is the SOS response. We have recently reported that the Escherichia coli toxin‐antitoxin mazEF pathway inhibits the SOS response; in fact, the SOS response is permitted only in E. coli strains deficient in the expression of the mazEF pathway. Moreover, in strains lysogenic for prophage λ, the SOS response is enabled by the presence of λrexB. λRexB had previously been found to inhibit the degradation of the antitoxin MazE, thereby preventing the toxic action of MazF. Thus, phage λ rexB gene not only safeguards the prophage state by preventing death of its E. coli host but is also indirectly involved in the lysogenic–lytic switch.  相似文献   

19.
Summary TB37 is a dna A-mutant of Salmonella typhimurium in which the initiation of DNA replication at the origin is stopped at 42°C. DNA synthesis in uninfected cells of this strain and in cells infected by phage P22 was followed by the pulse labelling technique. DNA replication ceases completely after about 50 minutes at the high temperature. After lytic infection with P22 (c2) at this time, DNA synthesis starts immediately and increases at a rate well comparable to the permissive control. Obviously the temperature sensitive function of the dnaA-product is dispensable for P22 DNA replication, especially for its initiation. This result is confirmed by the normal yield of phage particles under these conditions, provided that a late step in P22 maturation which naturally is temperature sensitive can proceed at low temperature. If TB37 is infected at 42°C with P22 wild type, an unexpected high rate of phage controlled DNA synthesis is observed. Preliminary results seem to indicate that the process of integration is a prerequisite for part of this synthesis.  相似文献   

20.
DNA聚合酶在DNA合成过程中需要的引物包括RNA引物、DNA自我引物和蛋白质引物3种类型。新DNA链(如冈崎片段)的复制多是在DNA模板上合成一段RNA引物,细小病毒利用其基因组末端的反向末端重复序列(ITRs)自我折叠成DNA引物,而一些DNA、RNA病毒及真菌质粒起始复制反应的引物则是蛋白质。以感染原核生物的噬菌体Phi29和真核DNA病毒腺病毒为例,从复制过程所涉及的蛋白质、对复制原点的识别、复制起始反应、新链的延伸、复制终止过程等方面详细阐述DNA病毒由蛋白质引发的复制机制,并对已商品化的Phi29 DNA聚合酶产品多重置换扩增及单细胞测序等的应用以及基于噬菌体Phi29蛋白质起始的最小复制系统体外扩增异源DNA等最新的应用研究作相关总结介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号