首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid spectrophotometric method for the determination of thermoresistance in tissue animal lysosomes is described. The of analysis is decreased by 5-6 h, in comparison with enzymatic technique. The determination regimen was chosen in such a way that the process of lysosomal lysis was linear. The dependence of the incubation mixture temperature on the degree of lysosomal lysis was complex. The rate of lysosomal lysis rapidly increased at greater than 37 degrees C. Lysosome incubation at 0-4 degrees C for 24 h decreased its hypothermal (t = 10-30 degrees C), but not hyperthermal (t greater than 37 degrees C) sensitivity. Isolated lysosome thermoresistance may be used as an index of its stability and labialization in vivo and in vitro by various physico-chemical factors. The percentage of initial absorption (A520) and the initial rate of lysosomal lysis (delta A520/min), as well as melting temperature (Tmel) and biological half-life (t1/2) may be the measurements of such effect.  相似文献   

2.
Light scattering measurements were used to monitor the integrity of isolated rat kidney lysosomes during prolonged incubation at 37 degrees C or following the addition of lysolecithin. The fall in extinction at 520 nm (E520) was shown to correlate very well with the fall in the particulate enzyme activity and the corresponding rise in the soluble enzyme activity. Measurements were also made of the release of H+ from the lysosomes into the suspending medium following treatment with lysolecithin. A good relationship was obtained between acidification of the medium and changes in the light scattering (E520) of the lysosomal suspension. The value of these techniques in following rapid changes in the integrity of lysosomes is discussed.  相似文献   

3.
Starvation induces significant alterations in lysosomal enzymes, and reduced concentrations of glucose increases the activity of several lysosomal enzymes. Therefore, to evaluate the lysosomal antimicrobial activity under starvation conditions, we added 0, 5, 10, 20, or 40 g/l of glucose (0%, 0.5%, 1%, 2%, or 4% glucose) supplemented YP medium to cultured Saccharomyces cerevisiae, and lysosomal fractions were isolated from S. cerevisiae grown under the various culture conditions. The lysosomes isolated from each condition exhibited increased antimicrobial activity against Escherichia coli as determined by a decrease in glucose concentration. In addition, a starvation-dependent increase in lysosomal activity coincided with increased lysosome intensity at the cytosol and distinct protein expression from lysosomes in S. cerevisiae. It also was determined found that the lysosomes have antimicrobial activity against seven different microorganisms, including E. coli, and starvation-induced lysosomes showed enhanced antimicrobial activity compared to those from normal lysosomes. These results suggest the possibility that lysosomal alterations during starvation may induce conditions that activate lysosomes for future development of efficient antimicrobial agents.  相似文献   

4.
The administration of cephaloridine to rats caused a decrease in the excretion of acid phosphatase into the urine. The antibiotic itself had no effect on urinary acid phosphatase and inhibitors or proteolytic enzymes were not present in the urine from treated rats. Cephaloridine may therefore be stabilizing the lysosomal membrane in vivo and experiments with isolated lysosomes confirm this hypothesis. The lysosomal integrity was followed by measuring the acid phosphatase activity and the light scattering properties of the particles. A good correlation was obtained between these parameters in the case of thermal disruption and progesterone induced lysis of the lysosomes and low concentrations of cephaloridine (0.1-1.0 mmol/1) protected the lysosomes against this form of damage.  相似文献   

5.
A method was developed for the isolation of unmodified lysosomes of human origin using cultured EB-virus transformed lymphoblasts. The cells were lysed carefully by repeated resuspension in buffered isotonic sucrose. A crude granular fraction derived from this lysate was further purified by isopyknic centrifugation in an isotonic colloidal silica gel gradient and by free-flow electrophoresis. The following relative specific activities (mean ± S.D.) of lysosomal marker enzymes were measured in a pooled lysosomal fraction obtained from the final electrophoresis step (representing less than 0.1% of the initial protein): β-N-acetylglucosaminidase 85.6 ± 15.5; β-galactosidase 87.6 ± 13.4; acid β-glycerophosphatase 41.7 ± 3.5; β-glucuronidase 36.6 ± 6.1. With respect to the final two enzymes the recovery within this pooled fraction was 5–6% of the initial lysate. The great differences in relative specific activities achievable may be due mainly to different extralysosomal portions of the lysosomal marker enzymes, as was found for acid β-glycerophosphatase which was largely distributed within non-lysosomal structures in lymphoblasts when studied by histochemical staining. The final fraction consisted almost exclusively of lysosomes when examined by electron microscopy. Most lysosomes appeared club-shaped immediately after cell lysis and throughout the preparation procedure. Examination by electron microscopy and measurement of the latency of lysosomal enzyme activity revealed an exceptional integrity of the lysosomal membrane. This method provides the opportunity to study highly purified lysosomes from patients with lysosomal disorders.  相似文献   

6.
Certain amines known to be concentrated in lysosomes, termed "lysosomotropic amines," cause the formation of lysosomal vacuoles. A cell-free system was established to examine the effects of basic substances and acidic ionophores. In this system, the drugs not only increased the internal pH, but also caused a disruption of lysosomes. The osmotic swelling of lysosomes induced by protonated bases or cations for particular ionophores, which had accumulated within lysosomes driven by the proton pump, caused the osmotic lysis of lysosomes. The lysosomal disruption was inhibited upon the addition of the cytosol fraction. This phenomenon provides an in vitro system for studying the osmo-regulation and intercellular dynamics of the lysosomal system, including membrane fusion. The lysosomal stabilization factor was purified from the cytosol fraction and identified as ATP-stimulated glucocorticoid receptor translocation promoter (ASTP).  相似文献   

7.
Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing lysosomal photodestruction of normal breast epithelial cells. Thus, MDR modalities including ABCG2-dependent drug sequestration within EVs can be rationally converted to a pharmacologically lethal Trojan horse to selectively eradicate MDR cancer cells.  相似文献   

8.
Cancer cells invade by secreting degradative enzymes which, under normal conditions, are sequestered in lysosomal vesicles. The ability to noninvasively label lysosomes and track lysosomal trafficking would be extremely useful to understand the mechanisms by which degradative enzymes are secreted in the presence of pathophysiological environments, such as hypoxia and acidic extracellular pH, which are frequently encountered in solid tumors. In this study, a novel method of introducing a fluorescent label into lysosomes of human mammary epithelial cells (HMECs) was evaluated. Highly glycosylated lysosomal membrane proteins were labeled with a newly synthesized compound, 5-dimethylamino-naphthalene-1-sulfonic acid 5-amino-3,4,6-trihydroxy-tetrahydro-pyran-2-ylmethyl ester (6-O-dansyl-GlcNH2). The ability to optically image lysosomes using this new probe was validated by determining the colocalization of the fluorescence from the dansyl group with immunofluorescent staining of two well-established lysosomal marker proteins, LAMP-1 and LAMP-2. The location of the dansyl group in lysosomes was also verified by using an anti-dansyl antibody in Western blots of lysosomes isolated using isopycnic density gradient centrifugation. This novel method of labeling lysosomes biosynthetically was used to image lysosomes in living HMECs perfused in a microscopy-compatible cell perfusion system.  相似文献   

9.
A method is described for the isolation of secondary lysosomes from homogenates of rabbit liver; The uptake of Triton WR-1339 by rabbit-liver lysosomes when administered by intraperitoneal injection was used to decrease the density of secondary lysosomes. Lysosomal fractions prepared by this method contain an NAD nucleosidase (NAD glycohydrolase, EC 3;2.25), an enzyme which has previously been considered to be associated with other subcellular fractions. The enzyme has maximum activity at pH 6 and cleaves both NAD and NADP. It is inhibited by nicotinamide (Ki equals 4.5 mM) and by HgCl2. Both nucleosidase and 2'-nucleotidase show in-vitro latency typical of lysosomal acid hydrolases. Rabbit-liver plasma-membrane fractions were isolated which contained most 5'-nucleotidase but relatively little nucleosidase, whereas rabbit liver lysosomes contain both 5'-nucleotidase and nucleosidase enzymes but little adenyl cyclase.  相似文献   

10.
Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal membrane proteome was significantly altered by the ectopic expression of an active form of the ErbB2 oncogene, which renders the cells highly metastatic. The furthermost ErbB2-associated changes included increased levels of CD63, S100A11 and ferritin heavy chain. Overall, our data introduce the antibody-based purification of lysosomes as a suitable method for the characterization of lysosomes from a variety of pathological conditions with altered lysosomal density and stability.  相似文献   

11.
A method has been developed to measure the concentration of chloroquine in lysosomes isolated from the liver of rats. It employs 3H2O and [U-14C]sucrose to determine the intralysosomal water volume of purified lysosomes obtained by free flow electrophoresis. Twelve h after a single dose, the concentration of chloroquine in lysosomes was 6.3 mM and at 24 h it rose to 16.5 mM. With continued treatment, lysosomal chloroquine concentrations were 61 and 74 mM at 48 and 72 h. The lysosomal concentrations of chloroquine attained were sufficient to block intralysosomal phospholipase A1 activity. The lysosomal content of phospholipid rises 1.7-fold and 2.6-fold over that of control at 12 and 24 h, respectively. At 72 h, lysosomal phospholipid was 3.7-fold greater than that of control. Lysosomes show an increased negative surface charge with chloroquine administration which is due in part to an increased ratio of acidic to neutral phospholipids in the lysosomal membrane. The phosphatidylinositol content of lysosomes rose rapidly with chloroquine treatment and accounted for the early increase in the ratio. Bis(monoacylglycero)phosphate, an acidic phospholipid synthesized only in lysosomes, increased later in the course of chloroquine treatment and accounted for the continued increase in acidic phospholipids.  相似文献   

12.
The mechanism of the lysis of target cells by cytotoxic T-cells (Tc) is still obscure; there is no evidence for transfer of material from the Tc and prior to lysis, despite intimate contact, the plasma membranes of both types of cell appear to remain intact. The effects on the target cell lysosomes of brief contact between anti-viral Tc and targets bearing both the appropriate histocompatibility and viral antigens, have been examined cytochemically. Both the distribution of acid phosphatase activity and the percentage bound lysosomal naphthylamidase activity indicated that, in virus-infected target cells exposed to Tc, the lysosomal membranes became totally labilized. Thus the contact between Tc and targets appears to cause sufficient perturbation of the target plasma membrane as to cause the intracellular release of some agent that activates 'suicide capsule' lysosomes.  相似文献   

13.
Since lysosomes are prone to osmotic lysis, we have examined the correlation between their physical state and sensitivity to osmotic challenge, using agents which modify membrane fluidity. The latency loss of beta-hexosaminidase after an incubation in hypotonic sucrose medium was followed under different conditions of membrane fluidity, recorded by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene. Increasing fluidity of the lysosomal membranes with benzyl alcohol (BA) and greater rigidity caused by cholesteryl hemisuccinate (CHS) increased and decreased the enzyme latency loss, respectively. The effects of BA and CHS treatments on osmotic sensitivity were reversible subsequently by reciprocal treatments of the lysosomes with CHS and BA, respectively. The results indicate that the physical state of the membrane does indeed affect lysosomal osmotic stability.  相似文献   

14.

Background

Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages) and non-professional (epithelial) phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear.

Methodology/Principal Finding

In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion.

Conclusion/Significance

Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of lysosomes are available in the cell and that cholesterol depletion may modulate the fusion of pre-docked lysosomes at the cell cortex.  相似文献   

15.
Cytolysis of host cells by pathogenic Entamoeba histolytica can be blocked by specific lysozyme inhibitions and is recently reported to be enhanced by phosphoinositide (PI) signal transduction activation. However the mechanistic relationship between PI second messenger targets and massive lysosomal secretion needed to achieve rapid host cell lysis is unclear. We have previously shown that intracellular alkalinization associated with activated PI hydrolysis produces a massive endocytosis of huge proportions which would force a corresponding exocytosis for the maintenance of overall cell dimensions. These endosomes are processed by primary lysosomes. Apparently then, the massive exocytosis secretory pathway could provide the means for the ejection of lysozymes over target cells. We show here using human Chang liver cells that intracellular alkalinization produced large surface pittings similar to those seen in pathogenic E. histolytica in a rounded state. The SEM profile is correlated with the TEM profile of large endosomes containing extracellular debris and endosomes associated with primary lysosomal vesicles, which could support the notion that some of the pittings seen in the rounded Chang cells and the pathogenic amoebae are exit portals for endosome-lysosomes.  相似文献   

16.
Open thyroid follicles were prepared by mechanical disruption of pig thyroid fragments through a metal sieve. This procedure allowed preparation of thyroid-cell material depleted of colloid thyroglobulin. Open thyroid follicles were used to prepared a crude particulate fraction, which contained lysosomes, mitochondria and endoplasmic reticulum. These organelles were subfractionated by isopycnic centrifugation on iso-osmotic Percoll gradients. A lysosomal peak was identified by its content of acid hydrolases: acid phosphatase, cathepsin D, beta-galactosidase and beta-glucuronidase. The lysosomal peak was well separated from mitochondria and endoplasmic reticulum. The lysosomal peak, from which Percoll was removed by centrifugation, was taken as the purified lysosome fraction (L). Lysosomes of fraction L were purified 45-55-fold (as compared with the homogenate) and contained about 5% of the total thyroid acid hydrolase activities. Electron microscopy showed that fraction L was composed of an approx. 90% pure population of lysosomes, with an average diameter of 220 nm. Acid hydrolase activities were almost completely (80-90%) released by an osmotic-pressure-dependent lysis. Thyroglobulin was identified by polyacrylamide-gel electrophoresis as a soluble component of the lysosome fraction. In conclusion, a 50-fold purification of pig thyroid lysosomes was achieved by using a new tissue-disruption procedure and isopycnic centrifugation on Percoll gradient. The presence of thyroglobulin indicates that the lysosome population is probably composed of primary and secondary lysosomes. Isolated thyroid lysosomes should serve as an interesting model to study the reactions whereby thyroid hormones are generated from thyroglobulin and released into the thyroid cells.  相似文献   

17.
The localization of acid phosphatase (E.C. 3.1.3.2), inorganic trimetaphosphatase (E.C. 3.6.1.2), and aryl sulfatase (E.C. 3.1.6.1) in the cortex of unactivated and activated eggs of Brachydanio was examined by ultrastructural cytochemistry. Using a lead capture method, activity for all three acid hydrolases was demonstrated in organelles of the cortex before and after egg activation. Acid phosphatase (AcPase) reaction product was consistently present in primary lysosomes, secondary lysosomes, multivesicular bodies, and yolk bodies. AcPase activity was absent from mitochondria, profiles of the endoplasmic reticulum, coated pits of exocytosed cortical granules, and coated vesicles. Although most cortical granules of the mature, unactivated egg were unreactive for this enzyme, a few showed AcPase reaction product. It is not clear whether the AcPase-positive granules might be an immature form of cortical granules or a subpopulation of these organelles with lysosomal properties. Most cisternae of the Golgi apparatus did not stain for AcPase; however, reaction product was occasionally localized in a single cisterna as well as several small vesicles at the inner face of the Golgi. The intensity of the reaction product and the pattern of distribution of trimetaphosphatase (Tm-Pase) activity was very similar to that of AcPase. However, TmPase was never observed in cortical granules. Cortices of unactivated and activated eggs showed less overall aryl sulfatase (ArSase) activity when compared with AcPase and TmPase. The presence of ArSase reaction product in lysosomes and multivesicular bodies confirmed the acid hydrolytic nature of these organelles. AcPase and TmPase, and to a lesser extent ArSase, are adequate markers of a cortical lysosomal system in the danio egg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Macrophages incubated with mildly oxidized low density lipoprotein (OxLDL), aggregated low density lipoprotein (AggLDL), or cholesteryl ester-rich lipid dispersions (DISPs) accumulate cholesterol in lysosomes followed by an inhibition of lysosomal cholesteryl ester (CE) hydrolysis. The variety of cholesterol-containing particles producing inhibition of hydrolysis suggests that inhibition may relate to general changes in lysosomes. Lysosome pH is a key mediator of activity and thus is a potential mechanism for lipid-induced inhibition. We investigated the effects of cholesterol accumulation on THP-1 macrophage lysosome pH. Treatment with OxLDL, AggLDL, and DISPs resulted in inhibition of the lysosome's ability to maintain an active pH and concomitant decreases in CE hydrolysis. Consistent with an overall disruption of lysosome function, exposure to OxLDL or AggLDL reduced lysosomal apolipoprotein B degradation. The lysosomal cholesterol sequestration and inactivation are not observed in cholesterol-equivalent cells loaded using acetylated low density lipoprotein (AcLDL). However, AcLDL-derived cholesterol in the presence of progesterone (to block cholesterol egression from lysosomes) inhibited lysosome acidification. Lysosome inhibition was not attributable to a decrease in the overall levels of vacuolar ATPase. However, augmentation of membrane cholesterol in isolated lysosomes inhibited vacuolar ATPase-dependent pumping of H+ ions into lysosomes. These data indicate that lysosomal cholesterol accumulation alters lysosomes in ways that could exacerbate foam cell formation and influence atherosclerotic lesion development.  相似文献   

19.
Rab7 and Rab34 are implicated in regulation of lysosomal morphology and they share a common effector referred to as the RILP (Rab-interacting lysosomal protein). Two novel proteins related to RILP were identified and are tentatively referred to as RLP1 and RLP2 (for RILP-like protein 1 and 2, respectively). Overexpression of RILP caused enlarged lysosomes that are positioned more centrally in the cell. However, the morphology and distribution of lysosomes were not affected by overexpression of either RLP1 or RLP2. The molecular basis for the effect of RILP on lysosomes was investigated, leading to the demonstration that a 62-residue region (amino acids 272-333) of RILP is necessary for RILP's role in regulating lysosomal morphology. Remarkably, transferring this 62-residue region unique to RILP into corresponding sites in RLP1 rendered the chimeric protein capable of regulating lysosome morphology. A correlation between the interaction with GTP-bound form of both Rab proteins and the capability of regulating lysosomes was established. These results define a unique region in RILP responsible for its specific role in regulating lysosomal morphology as well as in its interaction with Rab7 and Rab34.  相似文献   

20.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号