首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Yeast zygotes which are heteroplasmic for mitochondrial genes reproduce vegetatively to form clones of diploid progeny which are homoplasmic. This vegetative segregation of mitochondrial genes has been interpreted in terms of a random distribution of mitochondria or mitochondrial genomes between mother and bud at cell division. We have developed equations which permit calculation of the number of segregating units in the zygote and the number of those units which enter the bud, assuming that segregation of the units is genetically random and numerically variable or equal. Use of the equations requires data from partial pedigree analyses: we isolate zygotes, separate the first bud, then determine the frequency of mitochondrial alleles among the progeny of mother cells whose first buds were homoplasmic. Application of this method to data from five crosses suggests that most zygotes have a small number of segregating units (usually less than a dozen) and only one or two enter the first bud. Analysis of the frequency of buds which are nearly but not quite homoplasmic indicates that the segregating units may be mitochondria or portions thereof which include many mitochondrial genomes, all the genomes in a unit being genetically identical in most but not all cases. These results are compatible with, but do not prove, the hypothesis of random vegetative segregation of mitochondria.  相似文献   

3.
CPEO (chronic progressive external ophthalmoplegia) is a common mitochondrial disease phenotype in adults which is due to mtDNA (mitochondrial DNA) point mutations in a subset of patients. Attributing pathogenicity to novel tRNA mtDNA mutations still poses a challenge, particularly when several mtDNA sequence variants are present. In the present study we report a CPEO patient for whom sequencing of the mitochondrial genome revealed three novel tRNA mtDNA mutations: G5835A, del4315A, T1658C in tRNATyr, tRNAIle and tRNAVal genes. In skeletal muscle, the tRNAVal and tRNAIle mutations were homoplasmic, whereas the tRNATyr mutation was heteroplasmic. To address the pathogenic relevance, we performed two types of functional tests: (i) single skeletal muscle fibre analysis comparing G5835A mutation loads and biochemical phenotypes of corresponding fibres, and (ii) Northern-blot analyses of mitochondrial tRNATyr, tRNAIle and tRNAVal. We demonstrated that both the G5835A tRNATyr and del4315A tRNAIle mutation have serious functional consequences. Single-fibre analyses displayed a high threshold of the tRNATyr mutation load for biochemical phenotypic expression at the single-cell level, indicating a rather mild pathogenic effect. In contrast, skeletal muscle tissue showed a severe decrease in respiratory-chain activities, a reduced overall COX (cytochrome c oxidase) staining intensity and abundant COX-negative fibres. Northern-blot analyses showed a dramatic reduction of tRNATyr and tRNAIle levels in muscle, with impaired charging of tRNAIle, whereas tRNAVal levels were only slightly decreased, with amino-acylation unaffected. Our findings suggest that the heteroplasmic tRNATyr and homoplasmic tRNAIle mutation act together, resulting in a concerted effect on the biochemical and histological phenotype. Thus homoplasmic mutations may influence the functional consequences of pathogenic heteroplasmic mtDNA mutations.  相似文献   

4.
We investigated the distribution and expression of mutant mtDNAs carrying the A-to-G mutation at position 8344 in the tRNA(Lys) gene in the skeletal muscle of four patients with myoclonus epilepsy and ragged-red fibers (MERRF). The proportion of mutant genomes was greater than 80% of total mtDNAs in muscle samples of all patients and was associated with a decrease in the activity of cytochrome c oxidase (COX). The vast majority of myoblasts, cloned from the satellite-cell population in the same muscles, were homoplasmic for the mutation. The overall proportion of mutant mtDNAs in this population was similar to that in differentiated muscle, suggesting that the ratio of mutant to wild-type mtDNAs in skeletal muscle is determined either in the ovum or during early development and changes little with age. Translation of all mtDNA-encoded genes was severely depressed in homoplasmic mutant myoblast clones but not in heteroplasmic or wild-type clones. The threshold for biochemical expression of the mutation was determined in heteroplasmic myotubes formed by fusion of different proportions of mutant and wild-type myoblasts. The magnitude of the decrease in translation in myotubes containing mutant mtDNAs was protein specific. Complex I and IV subunits were more affected than complex V subunits, and there was a rough correlation with both protein size and number of lysine residues. Approximately 15% wild-type mtDNAs restored translation and COX activity to near normal levels. These results show that the A-to-G substitution in tRNA(Lys) is a functionally recessive mutation that can be rescued by intraorganellar complementation with a small proportion of wild-type mtDNAs and explain the steep threshold for expression of the MERRF clinical phenotype.  相似文献   

5.

Introduction

Hippocampal sclerosis is the most common lesion in patients with mesial temporal lobe epilepsy. Recently, there has been growing evidence on the involvement of mitochondria also in sporadic forms of epilepsy. In addition, it has been increasingly argued that mitochondrial dysfunction has an important role in epileptogenesis and seizure generation in temporal lobe epilepsy. Although mtDNA polymorphisms have been identified as potential risk factors for neurological diseases, the link between homoplasmy and heteroplasmy within tissues is not clear. We investigated whether mitochondrial DNA (mtDNA) polymorphisms are involved in a case report of a patient with mesial temporal lobe epilepsy-hippocampal sclerosis (MTLE-HS).

Design

We report the whole genome mtDNA deep sequencing results and clinical features of a 36-year-old woman with MTLE-HS. We used pyrosequencing technology to sequence a whole mitochondrial genome isolated from six different regions of her brain and blood. To assess the possible role of mitochondrial DNA variations in affected tissues, we compared all specimens from different regions of the hippocampus and blood.

Results

In total, 35 homoplasmic and 18 heteroplasmic variations have been detected in 6 different regions of the hippocampus and in blood samples. While the samples did not display any difference in homoplasmic variations, it has been shown that hippocampus regions contain more heteroplasmic variations than blood. The number of heteroplasmic variations was highest in the CA2 region of the brain and accumulated in ND2, ND4 and ND5 genes. Also, dentate and subiculum regions of the hippocampus had similar heteroplasmic variation profiles.

Discussion

We present a new rare example of parallel mutation at 16223 position. Our case suggests that defects in mitochondrial function might be underlying the pathogenesis of seizures in temporal lobe epilepsy.  相似文献   

6.
Large-scale rearrangements of mitochondrial DNA (mtDNA; i.e., partial duplications [dup-mtDNAs] and deletions [Delta-mtDNAs]) coexist in tissues in a subset of patients with sporadic mitochondrial disorders. In order to study the dynamic relationship among rearranged and wild-type mtDNA (wt-mtDNA) species, we created transmitochondrial cell lines harboring various proportions of wt-, Delta-, and dup-mtDNAs from two patients. After prolonged culture in nonselective media, cells that contained initially 100% dup-mtDNAs became heteroplasmic, containing both wild-type and rearranged mtDNAs, likely generated via intramolecular recombination events. However, in cells that contained initially a mixture of both wt- and Delta-mtDNAs, we did not observe any dup-mtDNAs or other new forms of rearranged mtDNAs, perhaps because the two species were physically separated and were therefore unable to recombine. The ratio of wt-mtDNA to Delta-mtDNAs remained stable in all cells examined, suggesting that there was no replicative advantage for the smaller deleted molecules. Finally, in cells containing a mixture of monomeric and dimeric forms of a specific Delta-mtDNA, we found that the mtDNA population shifted towards homoplasmic dimers, suggesting that there may be circumstances under which the cells favor molecules with multiple replication origins, independent of the size of the molecule.  相似文献   

7.
Mitochondrial genotypes have been shown to segregate both rapidly and slowly when transmitted to consecutive generations in mammals. Our objective was to develop an animal model to analyze the patterns of mammalian mitochondrial DNA (mtDNA) segregation and transmission in an intraspecific heteroplasmic maternal lineage to investigate the mechanisms controlling these phenomena. Heteroplasmic progeny were obtained from reconstructed blastocysts derived by transplantation of pronuclear-stage karyoplasts to enucleated zygotes with different mtDNA. Although the reconstructed zygotes contained on average 19% mtDNA of karyoplast origin, most progeny contained fewer mtDNA of karyoplast origin and produced exclusively homoplasmic first generation progeny. However, one founder heteroplasmic adult female had elevated tissue heteroplasmy levels, varying from 6% (lung) to 69% (heart), indicating that stringent replicative segregation had occurred during mitotic divisions. First generation progeny from the above female were all heteroplasmic, indicating that, despite a meiotic segregation, they were derived from heteroplasmic founder oocytes. Some second and third generation progeny contained exclusively New Zealand Black/BINJ mtDNA, suggesting, but not confirming, an origin from an homoplasmic oocyte. Moreover, several third to fifth generation individuals maintained mtDNA from both mouse strains, indicating a slow or persistent segregation pattern characterized by diminished tissue and litter variability beyond second generation progeny. Therefore, although some initial lineages appear to segregate rapidly to homoplasmy, within two generations other lineages transmit stable amounts of both mtDNA molecules, supporting a mechanism where mitochondria of different origin may fuse, leading to persistent intraorganellar heteroplasmy.  相似文献   

8.
Lee HC  Hsu LS  Yin PH  Lee LM  Chi CW 《Mitochondrion》2007,7(1-2):157-163
Somatic mutations in mitochondrial DNA (mtDNA) have been demonstrated in various human cancers. Many cancers have high frequently of mtDNA with homoplasmic point mutations, and carry less frequently of mtDNA with large-scale deletions as compared with corresponding non-cancerous tissue. Moreover, most cancers harbor a decreased copy number of mtDNA than their corresponding non-cancerous tissue. However, it is unclear whether the process of decreasing in mtDNA content would be involved in an increase in the heteroplasmic level of somatic mtDNA point mutation, and/or involved in a decrease in the proportion of mtDNA with large-scale deletion in cancer cells. In this study, we provided evidence that the heteroplasmic levels of variations in cytidine number in np 303-309 poly C tract of mtDNA in three colon cancer cells were not changed during an ethidium bromide-induced mtDNA depleting process. In the mtDNA depleting process, the proportions of mtDNA with 4977-bp deletion in cybrid cells were not significantly altered. These results suggest that the decreasing process of mtDNA copy number per se may neither contribute to the shift of homoplasmic/heteroplasmic state of point mutation in mtDNA nor to the decrease in proportion of mtDNA with large-scale deletions in cancer cells. Mitochondrial genome instability and reduced mtDNA copy number may independently occur in human cancer.  相似文献   

9.
Defects in complex I (NADH:ubiquinone oxidoreductase (EC 1.6.5.3)) are the most frequent cause of human respiratory disorders. The pathogenicity of a given human mitochondrial mutation can be difficult to demonstrate because the mitochondrial genome harbors large numbers of polymorphic base changes that have no pathogenic significance. In addition, mitochondrial mutations are usually found in the heteroplasmic state, which may hide the biochemical effect of the mutation. We propose that the unicellular green alga Chlamydomonas could be used to study such mutations because (i) respiratory complex-deficient mutants are viable and mitochondrial mutations are found in the homoplasmic state, (ii) transformation of the mitochondrial genome is feasible, and (iii) Chlamydomonas complex I is similar to that of humans. To illustrate this proposal, we introduced a Leu157Pro substitution into the Chlamydomonas ND4 subunit of complex I in two recipient strains by biolistic transformation, demonstrating that site-directed mutagenesis of the Chlamydomonas mitochondrial genome is possible. This substitution did not lead to any respiratory enzyme defects when present in the heteroplasmic state in a patient with chronic progressive external ophthalmoplegia. When present in the homoplasmic state in the alga, the mutation does not prevent assembly of whole complex I (950 kDa) and the NADH dehydrogenase activity of the peripheral arm of the complex is mildly affected. However, the NADH:duroquinone oxidoreductase activity is strongly reduced, suggesting that the substitution could affect binding of ubiquinone to the membrane domain. The in vitro defects correlate with a decrease in dark respiration and growth rate in vivo.  相似文献   

10.
Single, large-scale deletions of mitochondrial DNA (mtDNA) are a common finding in the molecular investigation of patients with suspected mitochondrial disorders and are typically detected by Southern blot analysis of muscle DNA that has been linearized by a single cutter enzyme (BamHI or PvuII). We describe our investigations of a 47-year-old woman with exercise intolerance, myalgia, and ptosis who underwent a muscle biopsy for a suspected mitochondrial genetic abnormality. Southern blot analysis after digestion of muscle DNA with BamHI revealed the apparent presence of two mtDNA species, indicative of a heteroplasmic deletion of 2.0-2.5 kb in length involving approximately 50% of all molecules. Contrary to this observation, longrange polymerase chain reaction (PCR) amplified only wild-type mtDNA. Sequence analysis revealed that the patient harbored two previously recognized control region polymorphisms, a homoplasmic 16390G>A variant that introduces a new BamHI site and a heteroplasmic 16390G>A change that abolishes this site, thus explaining the initial false-positive testing for a heteroplasmic mtDNA deletion. Our findings highlight the potential problems associated with the diagnosis of mitochondrial genetic disease and emphasize the need to confirm positive cases of mtDNA deletions using more than one enzyme or an independent method such as long-range PCR amplification.  相似文献   

11.
Mutations in the mitochondrial tRNA(leu) (UUR) gene have been associated with diabetes mellitus and deafness. We screened for the presence of mtDNA mutations in the tRNA(leu) (UUR) gene and adjacent ND1 sequences in 12 diabetes mellitus pedigrees with a possible maternal inheritance of the disease. One patient carried a G to A substitution at nt 3243 (tRNA(leu) (UUR) gene) in heteroplasmic state. In a second pedigree a patient had an A to G substitution at nt 3397 in the ND1 gene. All maternal relatives of the proband had the 3397 substitution in homoplasmic state. This substitution was not present in 246 nonsymptomatic Caucasian controls. The 3397 substitution changes a highly conserved methionine to a valine at aa 31 and has previously been found in Alzheimer's (AD) and Parkinson's (PD) disease patients. Substitutions in the mitochondrial ND1 gene at aa 30 and 31 have associated with a number of different diseases (e.g. AD/PD, MELAS, cardiomyopathy and diabetes mellitus, LHON, Wolfram-syndrome and maternal inherited diabetes) suggesting that changes at these two codons may be associated with very diverse pathogenic processes. In a further attempt to search for mtDNA mutations outside the tRNAleu gene associated with diabetes, the whole mtDNA genome sequence was determined for two patients with maternally inherited diabetes and deafness. Except for substitutions previously reported as polymorphisms, none of the two patients showed any non-synonymous substitutions either in homoplasmic or heteroplasmic state. These results imply that the maternal inherited diabetes and deafness in these patients must result from alterations of nuclear genes and/or environmental factors.  相似文献   

12.
Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a "role reversal" event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or "recently masculinized" M-types may eventually replace the older or "standard" M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.  相似文献   

13.
Studies in vitro have shown that a respiratorydeficient phenotype is expressed by cells when the proportion of mtDNA with a disease-associated mutation exceeds a threshold level, but analysis of tissues from patients with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) have failed to show a consistent relationship between the degree of heteroplasmy and biochemical expression of the defect. One possible explanation for this phenomenon is that there is variation of heteroplasmy between individual cells that is not adequately reflected by the mean heteroplasmy for a tissue. We have confirmed this by study of fibroblast clones from subjects heteroplasmic for the MELAS 3243 (A G) mtDNA mutation. Similar observations were made with fibroblast clones derived from two subjects heteroplasmic for the 11778 (GA) mtDNA mutation of Leber's hereditary optic neuropathy. For the MELAS 3243 mutation, the distribution of mutant mtDNA between different cells was not randomly distributed about the mean, suggesting that selection against cells with high proportions of mutant mtDNA had occurred. To explore the way in which heteroplasmic mtDNA segregates in mitosis we followed the distribution of heteroplasmy between clones over approximately 15 generations. There was either no change or a decrease in the variance of intercellular heteroplasmy for the MELAS 3243 mutation, which is most consistent with segregation of heteroplasmic units of multiple mtDNA molecules in mitosis. After mitochondria from one of the MELAS 3243 fibroblast cultures were transferred to a mitochondrial DNA-free (0) cell line derived from osteosarcoma cells by cytoplast fusion, the mean level and intercellular distribution of heteroplasmy was unchanged. We interpret this as evidence that somatic segregation (rather than nuclear background or cell differentiation state) is the primary determinant of the level of heteroplasmy.  相似文献   

14.
Inheritance of mitochondrial disorders   总被引:1,自引:0,他引:1  
Chinnery PF 《Mitochondrion》2002,2(1-2):149-155
Over the last decade there have been major advances in our understanding of the genetic basis of mitochondrial disease, enabling genetic counseling for patients with autosomal dominant and autosomal recessive disorders. Genetic counseling for patients with mitochondrial DNA (mtDNA) mutations is less well established. Approximately one-third of adults with a mtDNA disorder are sporadic cases, usually due to a single deletion of mtDNA. About two-thirds of adults with mtDNA disease harbor a maternally transmitted point mutation. The recurrence risks are well documented for homoplasmic mtDNA mutations causing Leber hereditary optic neuropathy, but the situation is less clear for families with heteroplasmic mtDNA disorders. Two large studies have shown that for some heteroplasmic point mutations there appears to be a relationship between the percentage level of mutant mtDNA in a mother's blood and her risk of having clinically affected offspring. The situation is less clear for other point mutations, some of which may cause sporadic disease. Recent evidence has cast light on the general principles behind the transmission of heteroplasmic mtDNA point mutations, which may be important for genetic counseling in the future.  相似文献   

15.
Mutations in mitochondrial DNA (mtDNA) may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We “shotgun” sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche''s 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300× average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20× while heteroplasmic variants required >200× coverage. Several Sanger “misses” were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.  相似文献   

16.
We studied mitochondrial transmission in the homobasidiomycete Agrocybe aegerita during plasmogamy, vegetative growth, and basidiocarp differentiation. Plasmogamy between homokaryons from progeny of three wild-type strains resulted in bidirectional nuclear migration, and the dikaryotization speed was dependent on the nuclear genotype of the recipient homokaryon. Little mitochondrial migration accompanied the nuclear migration. A total of 75% of the dikaryons from the fusion lines had both parental mitochondrial haplotypes (mixed dikaryons), and 25% had only a single haplotype (homoplasmic dikaryons); with some matings, there was a strong bias in favor of one parental haplotype. We demonstrated the heteroplasmic nature of mixed dikaryons by (i) isolating and subculturing apical cells in micromanipulation experiments and (ii) identifying recombinant mitochondrial genomes. This heteroplasmy is consistent with the previously reported suggestion that there is recombination between mitochondrial alleles in A. aegerita. Conversion of heteroplasmons into homoplasmons occurred (i) during long-term storage, (ii) in mycelia regenerated from isolated apical cells, and (iii) during basidiocarp differentiation. Homokaryons that readily accepted foreign nuclei were the most efficient homokaryons in maintaining their mitochondrial haplotype during plasmogamy, long-term storage, and basidiocarp differentiation. This suggests that the mechanism responsible for the nonrandom retention or elimination of a given haplotype may be related to the nuclear genotype or the mitochondrial haplotype or both.  相似文献   

17.
With the advancement of various gene transfer technologies, the establishment of mitochondria transfer as a viable technique to genetically engineer mouse models paradoxically lagged behind other genetic technologies. The lack of demonstrable recombination in mtDNA necessitates different approaches to conventional transgenesis-based techniques. Initially, heteroplasmic mice were created to explore disease pathogenesis and mitochondrial dynamics in an in vivo system. Ultimately, transmitochondrial mouse models will be used to explore the role of the mitochondrial genome in human disease processes and in the development of novel human gene therapies. Here, we describe methodology to produce transmitochondrial mice (both homoplasmic and heteroplasmic models) harboring foreign mitochondrial genomes, using both embryo microinjection and embryonic stem (ES) cell-based approaches. Specific modeling and the procedures for mitochondrial transfer will be of considerable importance toward our understanding of discrete mitochondrial mutations, as well as lead to the development of novel strategies and therapies for human diseases influenced by mitochondrial DNA mutations.  相似文献   

18.
Mitochondrial encephalomyopathies are highly variable clinically and at the genetic level. In practice, when the mitochondrial DNA (mtDNA) of any mitochondrial-patient is sequenced, a very high number of variations are noted. The vast majority of these differences are simply polymorphisms, that is, non-pathologic, homoplasmic sequence variations; however, when a heteroplasmic variant is detected (co-existence of two different populations in the same tissue) this is clinically significant. We identified two different heteroplasmic mutations in the mtDNA of two subjects: G4298A in the tRNA(Ala) (Alanine) gene and T10010C in the tRNA(Gly) (Glycine), both of which have been reported previously. This work confirms the pathogenicity of these mutations and helps define the correlation between genotype and phenotype.  相似文献   

19.
The timing and mechanisms of mitochondrial DNA (mtDNA) segregation and transmission in mammals are poorly understood. Genetic bottleneck in female germ cells has been proposed as the main phenomenon responsible for rapid intergenerational segregation of heteroplasmic mtDNA. We demonstrate here that mtDNA segregation occurs during primate preimplantation embryogenesis resulting in partitioning of mtDNA variants between daughter blastomeres. A substantial shift toward homoplasmy occurred in fetuses and embryonic stem cells (ESCs) derived from these heteroplasmic embryos. We also observed a wide range of heteroplasmic mtDNA variants distributed in individual oocytes recovered from these fetuses. Thus, we present here evidence for a previously unknown mtDNA segregation and bottleneck during preimplantation embryo development, suggesting that return to the homoplasmic condition can occur during development of an individual organism from the zygote to birth, without a passage through the germline.  相似文献   

20.
Blue mussels of the genus Mytilus have an unusual mode of mitochondrial DNA inheritance termed doubly uniparental inheritance (DUI). Females are homoplasmic for the F mitotype which is inherited maternally, whereas males are heteroplasmic for this and the paternally inherited M mitotype. In areas where species distributions overlap a varying degree of hybridization occurs; yet genetic differences between allopatric populations are maintained. Observations from natural populations and previous laboratory experiments suggest that DUI may be disrupted by hybridization, giving rise to heteroplasmic females and homoplasmic males. We carried out controlled laboratory crosses between Mytilus edulis and M. galloprovincialis to produce pure species and hybrid larvae of known parentage. DNA markers were used to follow the fate of the F and M mitotypes through larval development. Disruption of the mechanism which determines whether the M mitotype is retained or eliminated occurred in an estimated 38% of M. edulis x M. galloprovincialis hybrid larvae, a level double that previously observed in adult mussels from a natural M. edulis x M. galloprovincialis hybrid population. Furthermore, reciprocal hybrid crosses exhibited contrasting types of DUI disruption. The results indicate that disruption of DUI in hybrid mussels may be associated with increased mortality and hence could be a factor in the maintenance of genetic integrity for each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号