首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The six-revolute-joint instrumented spatial linkage (6R ISL) is often the measurement system of choice for monitoring motion of anatomical joints. However, due to tolerances of the linkage parameters, the system may not be as accurate as desired. A calibration algorithm and associated calibration device have been developed to refine the initial measurements of the ISL's mechanical and electrical parameters so that the measurement of six-degree-of-freedom motion will be most accurate within the workspace of the anatomical joint. The algorithm adjusts the magnitudes of selected linkage parameters to reduce the squared differences between the six known and calculated anatomical position parameters at all the calibration positions. Weighting is permitted so as to obtain a linkage parameter set that is specialized for measuring certain anatomical position parameters. Output of the algorithm includes estimates of the measuring system accuracy. For a particular knee-motion-measuring ISL and calibration device, several interdependent design parameter relationships have been identified. These interdependent relationships are due to the configuration of the ISL and calibration device, the number of calibration positions, and the limited resolution of the devices that monitor the position of the linkage joints. It is shown that if interdependence is not eliminated, then the resulting ISL parameter set will not be accurate in measuring motion outside of the calibration positions, even though these positions are within the ISL workspace.  相似文献   

2.
Biomechanical models offer a powerful set of tools for quantifying the diversity of function across fossil taxa. A computer‐based four‐bar linkage model previously developed to describe the potential feeding kinematics of Dunkleosteus terrelli is applied here to several other arthrodire placoderm taxa from different lineages. Arthrodire placoderms are a group of basal gnathostomes showing one of the earliest diversifications of jaw structures. The linkage model allows biomechanical variation to be compared across taxa, identify trends in skull morphology among arthrodires that potentially influence function and explore the role of linkage systems in the early evolution of jaw structures. The linkage model calculates various kinematic metrics including gape angle, effective mechanical advantage, and kinematic transmission coefficients. Results indicate that the arthrodire feeding system may be more diverse and complex than previously thought. A range of potential kinematic profiles among arthrodire taxa illustrate a diversity of feeding function comparable with modern teleost fishes. Previous estimates of bite force in Dunkleosteus are revised based on new morphological data. High levels of kinematic transmission among arthrodires suggest the potential for rapid gape expansion and possible suction feeding. Morphological comparisons indicate that there were several morphological solutions for obtaining these fast kinematics, which allowed different taxa to achieve similar kinematic profiles while varying other aspects of the feeding apparatus. Mapping of key morphological components of the linkage system on a general placoderm phylogeny illustrates the potential importance of four‐bar systems to the early evolution of jaw structures. J. Morphol. 271:990–1005, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The purpose of this study was to develop and evaluate an alternative method for determining the position of the anterior superior iliac spine (ASIS) during cycling. The approach used in this study employed an instrumented spatial linkage (ISL) system to determine the position of the ASIS in the parasagittal plane. A two-segment ISL constructed using aluminum segments, bearings, and digital encoders was tested statically against a calibration plate and dynamically against a video-based motion capture system. Four well-trained cyclists provided data at three pedaling rates. Statically, the ISL had a mean horizontal error of 0.03 +/- 0.21 mm and a mean vertical error of -0.13 +/- 0.59 mm. Compared with the video-based motion capture system, the agreement of the location of the ASIS had a mean error of 0.30 +/- 0.55 mm for the horizontal dimension and -0.27 +/- 0.60 mm for the vertical dimension. The ISL system is a cost-effective, accurate, and valid measure for two-dimensional kinematic data within a range of motion typical for cycling.  相似文献   

4.
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed,and its kinematic characteristics were analyzed.A series of experiments were conducted to observe locust morphology and jumping process.According to classic mechanics,the jumping process analysis was conducted to build the relationship of the locust jumping parameters.The take-off phase was divided into four stages in detail.Based on the biological observation and kinematics analysis,a mechanical model was proposed to simulate locust jumping.The forces of the flexible-rigid hopping mechanism at each stage were analyzed.The kinematic analysis using pseudo-rigid-body model was described by D-H method.It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping.Moreover,the jumping angle which decides the jumping process was discussed,and its relation with other parameters was established.A calculation case analysis corroborated the method.The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance,which can provide a foundation for design and motion planning of the hopping robot.  相似文献   

5.
The simultaneous optimization of a robot structure and control system to realize effective mobility in an outdoor environment is investigated. Recently, various wheeled mechanisms with passive and/or active linkages for outdoor environments have been developed and evaluated. We developed a mobile robot having six active wheels and passive linkage mechanisms, and experimentally verified its maneuverability in an indoor environment. However, there are various obstacles in outdoor environment and the travel ability of a robot thus depends on its mechanical structure and control system.We proposed a method of simultaneously optimizing mobile robot structure and control system using an evolutionary algorithm. Here, a gene expresses the parameters of the structure and control system. A simulated mobile robot and controller are based on these parameters and the behavior of the mobile robot is evaluated for three typical obstacles. From the evaluation results, new genes are created and evaluated repeatedly. The evaluation items are travel distance, travel time, energy consumption, control accuracy, and attitude of the robot.Effective outdoor travel is achieved around the 80th generation, after which, other parameters are optimized until the 300th generation. The optimized gene is able to pass through the three obstacles with low energy consumption, accurate control, and stable attitude.  相似文献   

6.
A method is proposed for the estimation of kinetic parameters of ionic channels in the cell membrane. The method is based on the generalized pencil-of-function approach, which exploits transient current signals from single channels to derive the frequency of the system poles. The proposed approach is validated for the well-known potassium channel by comparing the estimated values with the theoretical values given by Hodgkin and Huxley. The approach is superior to previous spectral approaches, both for its accuracy and for its robustness. It is especially useful for parameter estimation when the channel is exposed to electromagnetic fields. Results are given for exposure to 200-Hz and 915-MHz signals, to demonstrate the effect of fields on the kinetic parameters of the channel.  相似文献   

7.
A flexible calibration approach for line structured light vision system is proposed in this paper. Firstly a camera model is established by transforming the points from the 2D image plane to the world coordinate frame, and the intrinsic parameters of camera can be obtained accurately. Then a novel calibration method for structured light projector is presented by moving a planar target with a square pattern randomly, and the method mainly involves three steps: first, a simple linear model is proposed, by which the plane equation of the target at any orientations can be determined based on the square’s geometry information; second, the pixel coordinates of the light stripe center on the target images are extracted as the control points; finally, the points are projected into the camera coordinate frame with the help of the intrinsic parameters and the plane equations of the target, and the structured light plane can be determined by fitting these three-dimensional points. The experimental data show that the method has good repeatability and accuracy.  相似文献   

8.
Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.  相似文献   

9.
A two-step identification method is used to evaluate a generalized model of human postural control in the sagittal plane. Postural dynamics are represented as a planar open-chain linkage system supported by a triangular foot. The control mechanism is modeled as a state feedback element in which the torque acting at a given link is an arbitrary function of the state variables — angles and angular velocities. To validate the approach, six normal subjects underwent two series of experiments. The first series were used to determine an appropriate model of the system dynamics. The second series were used to estimate the parameters of the feedback model. A computer simulation of the complete system shows that the model predictions closely match the observed responses. These results suggest that the proposed model provides a useful framework for analysis of postural control mechanisms.This work was supported by the National Institutes of Health under Grant NS 21363  相似文献   

10.
In the case of noninbred and unselected populations with linkage equilibrium, the additive and dominance genetic effects are uncorrelated and the variance-covariance matrix of the second component is simply a product of its variance by a matrix that can be computed from the numerator relationship matrix A. The aim of this study is to present a new approach to estimate the dominance part with a reduced set of equations and hence a lower computing cost. The method proposed is based on the processing of the residual terms resulting from the BLUP methodology applied to an additive animal model. Best linear unbiased prediction of the dominance component d is almost identical to the one given by the full mixed model equations. Based on this approach, an algorithm for restricted maximum likelihood (REML) estimation of the variance components is also presented. By way of illustration, two numerical examples are given and a comparison between the parameters estimated with the expectation maximization (EM) algorithm and those obtained by the proposed algorithm is made. The proposed algorithm is iterative and yields estimates that are close to those obtained by EM, which is also iterative.  相似文献   

11.
In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience.  相似文献   

12.

A novel approach for distinguishing the viscoelastic and thixotropic phenomena of predisturbed and intact networks at short and long timescales of observation was proposed using stress relaxation, creep/recovery, single shear decay, and in-shear structural recovery experiments. The method was able to illustrate the connections patterns of the internal microstructure of hydrocolloids and its alteration over time. To test the universality of the new approach, we studied seven commercial and four emerging hydrocolloids. Moreover, to find out the correlation between the proposed parameters from this approach and the fundamental rheological parameters of the selected hydrocolloids, a principal component analysis (PCA) was employed, which showed an excellent correlation between the parameters of all hydrocolloids in predisturbed and intact states at short and long timescales. This work assumed that two different patterns of linkage connection exist, but the analysis can be extended to more than two connection patterns of linkages.

  相似文献   

13.
Gait research and clinical gait training may benefit from movement-dependent event control, that is, technical applications in which events such as obstacle appearance or visual/acoustic cueing are (co)determined online on the basis of current gait properties. A prerequisite for successful gait-dependent event control is accurate online detection of gait events such as foot contact (FC) and foot off (FO). The objective of the present study was to assess the feasibility of online FC and FO detection using a single large force platform embedded in a treadmill. Center-of-pressure, total force output and kinematic data were recorded simultaneously in 12 healthy participants. Online FC and FO estimates and spatial and temporal gait parameters estimated from the force platform data-i.e., center-of-pressure profiles-were compared to offline kinematic counterparts, which served as the gold standard. Good correspondence was achieved between online FC detections using center-of-pressure profiles and those derived offline from kinematic data, whereas FO was detected 31ms too late. A good relative and absolute agreement was achieved for both spatial and temporal gait parameters, which was improved further by applying more fine-grained FO estimation procedures using characteristic local minima in the total force output time series. These positive results suggest that the proposed system for gait-dependent event control may be successfully implemented in gait research as well as gait interventions in clinical practice.  相似文献   

14.
Soluble amyloid-β (Aβ) oligomers are thought to be a cause of neurodegeneration and memory loss in Alzheimer disease (AD). We recently reported a newly developed enzyme linked immunosorbent assay (ELISA) for high molecular weight (HMW) Aβ oligomers in which the same Aβ monoclonal antibody, BAN50, was used for both capture and detection in a single antibody sandwich ELISA (SAS-ELISA) system. Our previous data suggest that this assay will be useful for the early diagnosis of AD, but its practical application to large-scale or longitudinal studies has been limited because of lack of a reliable calibration standard. In order to develop such a standard, we have now constructed a novel peptide using the multiple antigenic peptide (MAP) technique, where multiple epitopes of BAN50 were linked, via a spacer, to a branching lysine core. We show that the standard curve constructed from a 16-mer MAP covered the physiological range of signals obtained in the BAN50 SAS-ELISA from samples of human CSF, serum, and plasma. Furthermore, this 16-mer MAP is available in large quantities and is stable against freeze-thawing. We estimate that the signal per 1 pM of this standard corresponds to 1.54-5.0 pM of HMW Aβ oligomers. This MAP approach could also be used to provide an effective calibration standard for other SAS-ELISAs.  相似文献   

15.
The purpose of this paper was to describe a technique that enables three-dimensional (3D) gait kinematics to be obtained using an electromagnetic tracking system, and to report the intra-trial, intra-day/inter-tester and inter-day/intra-tester repeatability of kinematic gait data obtained using this technique. Ten able-bodied adults underwent four gait assessments; the same two testers tested each subject independently on two different days. Gait assessments were conducted on a custom-built long-bed treadmill with no metal components between the rollers. Each gait assessment involved familiarisation to treadmill walking, subject anatomical and functional calibration, and a period of steady-state treadmill walking at a self-selected speed. Following data collection, 3D joint kinematics were calculated using the joint coordinate system approach. 3D joint angle waveforms for 10 left and right strides were extracted and temporally normalised for each trial. Intra-trial, intra-day/inter-tester and inter-day/intra-tester repeatability of the temporally normalised kinematic waveforms were quantified using the coefficient of multiple determination (CMD). CMDs for joint kinematics averaged 0.942 intra-trial, 0.849 intra-day/inter-tester and 0.773 inter-day/intra-tester. In general, sagittal plane kinematics were more repeatable than frontal or transverse plane kinematics, and kinematics at the hip were more repeatable than at the knee or ankle. The level of repeatability of kinematic gait data obtained during treadmill walking using this protocol was equal or superior to that reported previously for overground walking using image-based protocols.  相似文献   

16.
OLSON and WIJSMAN (1993) have proposed a robust linkage analysis between quantitative traits and a marker locus using all relative pairs. We extend their work to estimate the recombination fraction using a two-step procedure. In the first step Generalised Estimating Equations are solved. After robust linkage analysis minimum distance estimation is applied in the second step. Our approach requires a single codominant marker locus only. The relevant parameters of the genetic model can also be estimated by this method in the presence of linkage. We illustrate our approach by simulations.  相似文献   

17.
Xiao  Long  Liu  Ping  Liu  Xinggao  Zhang  Zeyin  Wang  Yalin  Yang  Chunhua  Gui  Weihua  Chen  Xu  Zhu  Bochao 《Bioprocess and biosystems engineering》2017,40(9):1375-1389

Collocation on finite element (CFE) is an effective simultaneous method of dynamic optimization to increase the profitability or productivity of industrial process. The approach needs to select an optimal mesh of time interval to balance the computational cost with desired solution. A new CFE approach with non-uniform refinement procedure based on the sensitivity analysis for dynamic optimization problems is, therefore, proposed, where a subinterval is further refined if the obtained control parameters have significant effect on the performance index. To improve the efficiency, the sensitivities of state parameters with respect to control parameters are derived from the solution of the discretized dynamic system. The proposed method is illustrated by testing two classic dynamic optimization problems from chemical and biochemical engineering. The detailed comparisons among the proposed method, the CFE with uniform mesh, and other reported methods are also carried out. The research results reveal the effectiveness of the proposed approach.

  相似文献   

18.
It has been suggested that a full linkage analysis is a prerequisite for confident paternity testing, by using DNA fingerprinting, in natural populations. These fears are based on a confusion between linkage and linkage disequilibrium and a misplaced assumption that linkage between bands will necessarily reduce the effective number of paternal-specific bands. Several methods for detecting linkage without resorting to the analysis of large sibships are considered, for example, by analysing half-sibships, by band-association, and by altering the experimental conditions used. Even if linkage is present, the magnitude of its effects are unlikely to undermine the accuracy of the technique, given the average levels of variability being detected. We conclude that the effects of linkage are only likely to present a problem when sample sizes are very small or when closely related individuals are being tested together.  相似文献   

19.
A new methodology based on a metabolic control analysis (MCA) approach is developed for the optimization of continuous cascade bioreactor system. A general framework for representation of a cascade bioreactor system consisting of a large number of reactors as a single network is proposed. The kinetic and transport processes occurring in the system are represented as a reaction network with appropriate stoichiometry. Such representation of the bioreactor systems makes it amenable to the direct application of the MCA approach. The process sensitivity information is extracted using MCA methodology in the form of flux and concentration control coefficients. The process sensitivity information is shown to be a useful guide for determining the choice of decision variables for the purpose of optimization. A generalized problem of optimization of the bioreactor is formulated in which the decision variables are the operating conditions and kinetic parameters. The gradient of the objective function to be maximized with respect to all decision variables is obtained in the form of response coefficients. This gradient information can be used in any gradient-based optimization algorithm. The efficiency of the proposed technique is demonstrated with two examples taken from literature: biotransformation of crotonobetaine and alcohol fermentation in cascade bioreactor system.  相似文献   

20.
In this paper, the problem of estimation of variance of the general linear regression estimator has been considered. It has been shown that the first order calibration approach is a special case of the class of estimators proposed by Deng and Wu (1987). A second order calibration approach is suggested. Some new estimators are shown to be the special case of the proposed calibration approach. The efficiency of the proposed strategy is shown to improve on the original strategy. An idea to find a non-negative estimate of variance has been suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号