首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Retinoic acid (RA) signaling regulates multiple aspects of vertebrate embryonic development and tissue patterning, in part through the local availability of nuclear hormone receptors called retinoic acid receptors (RARs) and retinoid receptors (RXRs). RAR/RXR heterodimers transduce the RA signal, and loss-of-function studies in mice have demonstrated requirements for distinct receptor combinations at different stages of embryogenesis. However, the tissue-specific functions of each receptor and their individual contributions to RA signaling in vivo are only partially understood. Here we use morpholino oligonucleotides to deplete the four known zebrafish RARs (raraa, rarab, rarga, and rargb). We show that while all four are required for anterior-posterior patterning of rhombomeres in the hindbrain, there are unique requirements for rarga in the cranial mesoderm for hindbrain patterning, and rarab in lateral plate mesoderm for specification of the pectoral fins. In addition, the alpha subclass (raraa, rarab) is RA inducible, and of these only raraa expression is RA-dependent, suggesting that these receptors establish a region of particularly high RA signaling through positive-feedback. These studies reveal novel tissue-specific roles for RARs in controlling the competence and sensitivity of cells to respond to RA.  相似文献   

5.
6.
Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA) signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1), a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM) specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA.  相似文献   

7.
8.
9.
Segmentation of the vertebrate hindbrain into rhombomeres is essential for the anterior-posterior patterning of cranial motor nuclei and their associated nerves. The vitamin A derivative, retinoic acid (RA), is an early embryonic signal that specifies rhombomeres, but its roles in neuronal differentiation within the hindbrain remain unclear. Here we have analyzed the formation of primary and secondary hindbrain neurons in the zebrafish mutant neckless (nls), which disrupts retinaldehyde dehydrogenase 2 (raldh2), and in embryos treated with retinoid receptor (RAR) antagonists. Mutation of nls disrupts secondary, branchiomotor neurons of the facial and vagal nerves, but not the segmental pattern of primary, reticulospinal neurons, suggesting that RA acts on branchiomotor neurons independent of its role in hindbrain segmentation. Very few vagal motor neurons form in nls mutants and many facial motor neurons do not migrate out of rhombomere 4 into more posterior segments. When embryos are treated with RAR antagonists during gastrulation, we observe more severe patterning defects than seen in nls. These include duplicated reticulospinal neurons and posterior expansions of rhombomere 4, as well as defects in branchiomotor neurons. However, later antagonist treatments after rhombomeres are established still disrupt branchiomotor development, suggesting that requirements for RARs in these neurons occur later and independent of segmental patterning. We also show that RA produced by the paraxial mesoderm controls branchiomotor differentiation, since we can rescue the entire motor innervation pattern by transplanting wild-type cells into the somites of nls mutants. Thus, in addition to its role in determining rhombomere identities, RA plays a more direct role in the differentiation of subsets of branchiomotor neurons within the hindbrain.  相似文献   

10.
11.
12.
In this study, the proliferative effects of retinoids were examined in the MC-26 and LoVo colon adenocarcinoma cell lines. The proliferation of the LoVo cell line was not altered in the presence of the retinoidsall trans-retinoic acid (atRA) and 9-cis-retinoic acid (9-cis-RA). Both retinoids, however, stimulated the growth, as measured by cell proliferation, of MC-26 cells.atRA and 9-cis-RA were equipotent in increasing MC-26 cell proliferation, suggesting that the growth stimulation is mediated by one or more retinoic acid receptors (RARs). To determine the RAR which might be responsible for this growth stimulatory effect, we characterized the RAR subtypes which were present in both cell lines. mRNA for the RARα, RARβ, and RARγ were detected in the MC-26 cell. Of the RARs present in MC-26 cells, the RARα does not mediate the growth stimulatory effects of retinoids, for a selective RARα antagonist was unable to prevent the retinoid-induced increase in MC-26 cell growth. RARα, RARβ, and RARγ mRNA are also expressed in the LoVo cell line; the lack of growth-stimulation by retinoids in LoVo cells, therefore, does not seem to be due to the absence of RARs. The results obtained in these experiments demonstrate that the growth response elicited by retinoids can vary between colon cancer cells and that the differences in response may not be solely determined by the RAR subtypes which are expressed in a colon cancer cell line.  相似文献   

13.
14.
The role of RAR alpha 1 and RAR gamma 2 AF-1 and AF-2 activation functions and of their phosphorylation was investigated during RA-induced primitive and parietal differentiation of F9 cells. We found that: (i) primitive endodermal differentiation requires RAR gamma 2, whereas parietal endodermal differentiation requires both RAR gamma 2 and RAR alpha 1, and in all cases AF-1 and AF-2 must synergize; (ii) primitive endodermal differentiation requires the proline-directed kinase site of RAR gamma 2-AF-1, whereas parietal endodermal differentiation additionally requires that of RAR alpha 1-AF-1; (iii) the cAMP-induced parietal endodermal differentiation also requires the protein kinase A site of RAR alpha-AF-2, but not that of RAR gamma; and (iv) the AF-1-AF-2 synergism and AF-1 phosphorylation site requirements for RA-responsive gene induction are promoter context-dependent. Thus, AF-1 and AF-2 of distinct RARs exert specific cellular and molecular functions in a cell-autonomous system mimicking physiological situations, and their phosphorylation by kinases belonging to two main signalling pathways is required to enable RARs to transduce the RA signal during F9 cell differentiation.  相似文献   

15.
16.
F9 embryonal carcinoma cells differentiate in response to retinoic acid (RA). To investigate the regulation of RA receptors (RARs) expression during this process, cDNA probes specific for the major RAR isoforms were used. In contrast to the level of RARβ2 mRNA which was high in cells treated 5 days with RA and below detection in untreated cells, as previously described, the steady state levels of RARα1, α2, γl, and γ2 mRNAs were markedly decreased in the RA-differentiated cells as compared to untreated cells. The down-regulation of the RA-responsive system in differentiated cells was also evident in gel shift assays as a marked decrease in binding capacity to a retinoid acid response element (βRARE), as well as in chloramphenicol acetyltransferase (CAT) assays as a sixfold decrease in RA-mediated transacting activity via this element. The down-regulation of RAR DNA-binding and transacting activity coincided with the burst in tissue plasminogen activator secretion and thus, occurred at the hinge between early and late differentiation. The down-regulation of RA responsiveness may constitute an important event in the transition between early and late differentiation stage in F9 cells. © 1993 Wiley-Liss, Inc.  相似文献   

17.
18.
Retinoic acid (RA) is mandatory for various biological processes and normal embryonic development but is teratogenic at high concentrations. In rodents, one of the major malformations induced by RA is cleft palate (CP). RA mediates its effects by RA receptors (RARs), but the expression patterns of RARs in the developing palate are still unclear. We investigated the normal expression of RAR alpha, beta, and gamma messenger RNAs (mRNAs) in the fetal mouse secondary palate and the effects of all-trans and 13-cis RAs on the expression of RAR mRNAs by Northern blot analysis. RAR alpha (2.8, 3.8 kb), RAR beta (3.3 kb), and RAR gamma (3.7 kb) mRNAs were detected in the fetal palate on gestational days (GD) 12.5-14.5. The expression of RAR alpha and gamma mRNAs did not show apparent sequential changes, but that of RAR beta mRNA increased at GD 13.5. Treatment of pregnant mice with 100 mg/kg all-trans RA induced CP in 94% of the fetuses and elevated the levels of RAR beta and gamma mRNAs in the fetal palate. The up-regulation of RAR beta mRNA by all-trans RA was more marked than that of RAR gamma mRNA. Treatment with 100 mg/kg 13-cis RA induced CP in only 19% of the fetuses. Although 13-cis RA elevated the RAR beta and gamma mRNA levels in fetal palates, its up-regulation was slower and less marked than that induced by all-trans RA. These findings indicate that the induction of RAR beta mRNA in the fetal palate correlates well with the tissue concentration of all-trans RA after RA treatment, and RAR beta may be one of the most influential candidate molecules for RA-induced teratogenesis.  相似文献   

19.
P19 embryonal carcinoma (EC) cells differentiate when treated with retinoic acid (RA). The P19 EC-derived mutant cell line RAC65 is resistant to the differentiation-inducing activity of RA. We show that these cells express a truncated retinoic acid receptor alpha(mRAR alpha-RAC65), probably due to the integration of a transposon-like element in the RAR alpha gene. This receptor lacks 71 C-terminal amino acids and terminates in the ligand-binding domain. In CAT assays in RAC65 cells, mRAR alpha-RAC65 fails to trans-activate the RAR beta promoter, which contains a RA-response element. In wild-type P19 EC cells mRAR alpha-RAC65 functions as a dominant-negative repressor of RA-induced RAR beta activation. Gel retardation assays demonstrate that mRAR alpha-RAC65 is still able to bind to the RA-response element of the RAR beta promoter, indicating that competition with functional RARs for the same binding site leads to the observed dominant-negative effect. In addition, in two RAC65 clones in which wild-type hRAR alpha was stably transfected RA-sensitivity was restored and in one RAR beta expression could be induced by RA. Taken together, these data show that the primary cause of RA-resistance of RAC65 cells is the expression of a defective RAR alpha, which prevents the trans-activation of RA-responsive genes and results in a loss of the ability to differentiate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号