首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell division requires an increase in surface area to volume ratio. During early development, surface area can increase, volume can decrease, or surface topography can be optimized to allow for division. While exocytosis is thought to be essential for division [Mol. Biol. Cell 10 (1999), 2735; Proc. Natl. Acad. Sci. USA 99 (2002), 3633], exocytosis doesn't always yield an increase in surface area [Proc. Natl. Acad. Sci. USA 79 (1982), 6712]. We used multiphoton laser scanning microscopy, fluorescence spectroscopy, and electron microscopy to monitor membrane trafficking, surface area, volume, and surface topography during early sea urchin development. Despite extensive membrane trafficking monitored by FM 1-43 fluorescence, we find that the net surface area of the embryo does not change prior to the eight-cell stage. During this period, embryo volume decreases by 15%, and microvilli disappear from interior facing membrane segments. Thus, the first three cell divisions utilize residual membrane liberated by decreasing cytoplasmic volume, and reducing microvilli density on interior facing membranes. Only after the eight-cell stage was a net increase in FM 1-43 fluorescence from the embryo surface detected. Our data suggest that compensatory endocytosis is downregulated after this developmental stage to yield an increase in surface area for cell division.  相似文献   

2.
When sea urchin embryos were subjected to nucleolar organizer region (NOR)-silver staining, densely stained particles were observed in the cytoplasm. The appearance of these cytoplasmic particles (CPs) was cell-cycle dependent. During early development, the CPs were detected at interphase, but not during mitosis; they disappeared at metaphase and reappeared at telophase. The CPs appeared periodically even when embryos were treated with cytochalasin B or aphidicolin, which inhibits the progression of cytokinesis and nuclear division, respectively. By contrast, CPs were not detected in the colchicine-treated embryos in which both cytokinesis and nuclear divisions were prevented. The CPs were observed only in the embryos whose stage was early blastula (about 6th to 7th cleavage) or earlier; no CPs were detected even at interphase in the embryos at late blastula (about 8th to 9th cleavage) or later. Electron microscopic evaluation showed CPs to be granular structures, similar to heavy bodies. Also, sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) showed that 95-kDa and 38-kDa proteins were the NOR-silver-staining proteins in sea urchin embryos. These proteins existed during the course of the cell cycles. These results suggest that (1) the cyclic appearance of the CPs or heavy bodies is closely related to the cell cycle as well as the programming of the embryogenesis, but independent of the cycle of cytokinesis and nuclear division; (2) 95-kDa and 38-kDa proteins are the major NOR-silver-staining proteins in sea urchin embryos.  相似文献   

3.
Regulation of protein synthesis can be exercised at a number of levels. One of the more experimentally difficult levels to approach has been the measurement of peptide elongation rate. This paper presents a new application of the cyanogen bromide (CNBr) cleavage of proteins in a direct measurement of histone peptide elongation rate in cleaving sea urchin embryos (Strongylocentrotus purpuratus). The data indicate an elongation rate (at 15°C) for histones H2B and H1α of 0.69 and 0.80 codons per s, respectively. These values fall within the range of previously published values of average peptide elongation rate for total protein in these cells. This method should be generally applicable to many systems for which the measurement of peptide elongation rate may provide a key to the understanding of the regulation of protein synthesis.  相似文献   

4.
Summary Blastula cell surface membranes of the sea urchin, Strongylocentrotus purpuratus, were isolated on polycationic beads by a method modified from Jacobson and Branton (1977) and Jacobson (1980). This study represents the first application of this procedure to an embryonic system. Embryo cells were attached to polylysine-coated polyacrylamide beads and lysed, leaving the embryo cell surface membranes still attached to the beads, and cytoplasmic particles were washed free of the exposed inner surfaces of the membranes. Cell surface membrane sheets were desorbed from the beads and collected by centrifugation. Approximately 8% and 5% of the cell surface membranes of dissociated embryo cells were recovered on the beads and in the membrane pellet, respectively. Specific activities of [3H]concanavalin A-binding and of the cell surface marker enzymes, alkaline phosphatase and Na+/K+ ATPase, were 16-, 19-, and 32-fold higher, respectively, in the cell surface membrane fraction than in the embryo cell homogenate. Membranes were relatively free of cytoplasmic contaminants as judged from electron micrographs and enzyme analysis. Activities in the membrane fraction of the cytoplasmic marker enzymes, cytochrome c oxidase, catalase, acid phosphatase, NADP- and NADPH-cytochrome c reductase, and acetylcholinesterase, were substantially less than homogenate levels. The entire procedure can be completed in 4 h. Since this cell surface membrane isolation technique relies only on the tendency of a negatively charged cell to adhere to a positively charged surface, it is less likely than most other methods to exhibit species and developmental stage specificity and should prove useful in the study of the developmental role of embryonic stage-specific membrane components.  相似文献   

5.
Summary Elongated microvilli attach the early sea urchin embryo to the fertilization envelope and support it in a concentric position within the perivitelline space. The contractility of the elongated microvilli was demonstrated in several ways. (1) During normal cleavage, these microvilli change their length to adapt to the change in shape and numbers of blastomeres. (2) When treated with calcium-free sea water, embryos become eccentrically located and the microvilli extend further than normal on one side; when returned to normal sea water, the embryos become centered again. (3) Several agents cause the fertilization envelope to become higher and thinner than normal and the elongated microvilli to extend correspondingly if treated within ten min after fertilization. In some cases, both elongated microvilli and fertilization envelope return to normal size when returned to normal sea water. (4) Fertilization in a papain solution causes the elongated microvilli and the fertilization envelope to contract to the surface of the embryo. (5) Refertilization after the papain-induced contraction can bring about the elongation of these microvilli and the elevation of the fertilization envelope a second time. It was also shown that elongated microvilli are extended immediately upon fertilization, at the same time as the short microvilli. The firm adherence of the tips of elongated microvilli to the fertilization envelope by means of extracellular matrix fibers is shown in a high voltage electron microscope stereoimage. This allows us to understand why it is that when the elongated microvilli extend or contract, the fertilization envelope also extends and contracts accordingly.  相似文献   

6.
Pancreatic cancer typically has an unfavourable prognosis due to late diagnosis and a lack of therapeutic options. Thus, it is important to better understand its pathological mechanism and to develop more effective treatments for the disease. Human chromosome 20q13 has long been suspected to harbour oncogenes involved in pancreatic cancer and other tumours. In this study, we found that eEF1A2, a gene located in 20q13, was significantly upregulated in pancreatic cancer. Little or no expression of eEF1A2 was detected in normal human pancreatic and chronic pancreatitis tissues, whereas increased eEF1A2 expression occurred in 83% of the pancreatic cancers we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of eEF1A2 promoted cell growth, survival, and invasion in pancreatic cancer. Our data thus suggest that eEF1A2 might play an important role in pancreatic carcinogenesis, possibly by acting as a tumour oncogene.  相似文献   

7.
Summary In embryos of the modern sea urchin species, subclass Euechinoidea, primary mesenchyme cells are derived from the progeny of micromeres formed at the sixteen cell stage of embryogenesis. The micromeres reside within the vegetal plate epithelium and later ingress into the blastocoel as primary mesenchyme cells which form the larval skeleton. Embryos of Eucidaris tribuloides, a member of the primitive subclass Perischoechinoidea, exhibit several noteworthy differences from euechinoid primary mesenchyme cell lineage including variable numbers and sizes of micromeres, the absence of mesenchyme ingression, and the lack of any detectable primary mesenchyme although a larval skeleton forms. In the present study, the cell lineage of the spiculogenic mesenchyme has been studied in Eucidaris tribuloides and in the euechinoid Lytechinus pictus by microinjecting the fluorescent tracer, Lucifer Yellow, into individual blastomeres of the embryo. In addition, wheat germ agglutinin, a lectin which binds only to primary mesenchyme cells of the early euechinoid embryo, was injected into the blastocoel of embryos of both species in order to examine the distribution of cells which possess primary mesenchyme-specific cell surface markers. The results of these experiments demonstrate that the spiculogenic mesenchyme of both Lytechinus and Eucidaris arise from descendants of micromeres formed at the sixteen cell stage, although the temporal and spatial distribution of these mesenchyme cells varies considerably between species. Furthermore, the evidence obtained suggests that the information necessary for spicule formation is already segregated to the vegetal pole by the eight cell stage. The results also suggest that there are no gap junctions present between the blastomeres of the early sea urchin embryo.  相似文献   

8.
《Mechanisms of development》1995,50(2-3):131-137
The SpMTA metallothionein (MT) gene of the sea urchin Strongylocentrotus purpuratus is restricted in its expression to the aboral ectoderm in gastrulae and pluteus larvae. The proximal 1.6 kb of the 5′-flanking region together with the 1.12-kb first intron of the SpMTA gene are sufficient for its correct cell-type specific expression in transgenic embryos. This restricted spatial expression is largely eliminated by deletion of an interior 405-bp region in the intron. Within this region is a 295-bp, genomically repetitive, transposon-like segment (Nemer et al., 1993), containing several sequence motifs highly homologous to posited regulatory elements in the promoters of other genes (Thiebaud et al., 1990). The P3A and P5 sites in this apparent regulatory cassette were shown through competition to bind with relatively high affinities the same nuclear factors, bound by their counterpart sites in the CyIIIa actin promoter.  相似文献   

9.
10.
11.
Fasciclin I, a neuronal cell adhesion molecule, was first identified in the grasshopper. To date, various fasciclin I-like proteins have been identified but their biological functions have not been well characterized. Here, we have purified a fasciclin I-like protein with a molecular weight of 33kDa from sea urchin (Strongylocentrotus intermedius) ovaries using hydrophobic chromatography and gel filtration. The protein was not N-glycosylated. Partial amino acid sequences of cyanogen bromide (CNBr)-cleaved fragments were highly conserved to other sea urchin fasciclin I-like proteins identified previously. The circular dichroism (CD) spectrum analysis demonstrated that the 33kDa protein contained high content of alpha-helical structure. These results suggest that the 33kDa protein is a fasciclin I-like family. Additionally, the fasciclin I-like protein promoted HT1080 human fibrosarcoma cell attachment. Further, a synthetic peptide (P1: GLREAANIAEQVDLRQVLRDVDL) of the protein corresponding to a highly conserved region of the fasciclin I-like family promoted heparin-dependent HT1080 cell attachment. Moreover, the peptide inhibited HT1080 cell attachment to the fasciclin I-like protein. These results suggest that the 33kDa protein from sea urchin ovaries isolated here is a member of the fasciclin I family and that the N-terminal region of the protein is important for cell attachment activity. The protein has a potential to be involved in biological functions in sea urchin as a cell adhesive molecule.  相似文献   

12.
Sea urchins provide an excellent model for studying cell cycle control mechanisms governing DNA replication in vivo. Fertilization and cell cycle progression are tightly coordinated by Ca2+ signals, but the mechanisms underlying the onset of DNA replication after fertilization remain less clear. In this study we demonstrate that calcium-dependent activation of ERK1 promotes accumulation of cyclinE/cdk2 into the male and female pronucleus and entry into first S-phase. We show that cdk2 activity rises quickly after fertilization to a maximum at 4 min, corresponding in timing to the early ERK1 activity peak. Abolishing MAP kinase activity after fertilization with MEK inhibitor, U0126, substantially reduces the early peak of cdk2 activity and prevents cyclinE and cdk2 accumulation in both sperm pronucleus and zygote nucleus in vivo. Both p27kip1 and roscovitine, cdk2 inhibitors, prevented DNA replication suggesting cdk2 involvement in this process in sea urchin. Inhibition of cdk2 activity using p27kip1 had no effect on the phosphorylation of MBP by ERK, but completely abolished phosphorylation of retinoblastoma protein, a cdk2 substrate, indicating that cdk2 activity is downstream of ERK1 activation. This pattern of regulation of DNA synthesis conforms to the pattern observed in mammalian somatic cells.  相似文献   

13.
14.
The cell cycle is driven by the activity of cyclin/cdk complexes. In somatic cells, cyclin E/cdk2 oscillates throughout the cell cycle and has been shown to promote S-phase entry and initiation of DNA replication. In contrast, cyclin E/cdk2 activity remains constant throughout the early embryonic development of the sea urchin and localizes to the sperm nucleus following fertilization. We now show that cyclin E localization to the sperm nucleus following fertilization is not unique to the sea urchin, but also occurs in the surf clam, and inhibition of cyclin E/cdk2 activity by roscovitine inhibits the morphological changes indicative of male pronuclear maturation in sea urchin zygotes. Finally, we show that inhibition of cyclin E/cdk2 activity does not block DNA replication in the early cleavage cycles of the sea urchin. We conclude that cyclin E/cdk2 activity is required for male pronuclear maturation, but not for initiation of DNA replication in early sea urchin development.  相似文献   

15.
Summary Development of the esophageal muscles in embryonic sea urchins is described using light- and electron microscopy. The muscles develop from processes of about 14 cells of the coelomic epithelium that become immunore-active to anti-actin at about 60 h (12–14° C). Initially, eachmyoblast extends a single process with numerous fine filopodia around the esophagus. By 72 h the processes have reached the midline and fused with those from cells of the contralateral coelomic sac. Myoblasts begin to migrate out of the coelomic epithelium between 72 and 84 h. By 72 h the processes stain with the F-actin specific probe NBD-phallacidin. The contractile apparatus is not evident in transmission electron-microscopic preparations of embryos at 70 h, but by 84 h the contractile apparatus is present and the muscle cells are capable of contraction. Because the myoblasts migrate free of the coelomic epithelium and are situated on the blastocoelar side of the basal lamina, it is suggested that that they should be considered as a class of mesenchymal cells.  相似文献   

16.
17.
A gene encoding the serotonin (5-hydroxytryptamine, 5-HT) receptor (5-HT-hpr) was identified from the sea urchin, Hemicentrotus pulcherrimus. Partial amino acid sequence deduced from the cDNA showed strong similarity to Aplysia californica 5-HT2 receptor. Immunoblotting analysis of this 5-HT-hpr protein (5-HT-hpr) with an antibody raised against a deduced peptide showed two bands. Their relative molecular masses were 69 and 53 kDa, respectively. The larger band alone disappeared after N-glycopeptidase F digestion, indicating the protein was N-glycosylated. Immunolocalization analysis showed that cells expressing the 5-HT-hpr (SRC) first appeared near the tip of the archenteron in 33-h post-fertilization (33 hpf) prism larvae. Their cell number doubled in 2 h, and 5-HT-hpr protein expression increased further without cell proliferation. SRC spread ventrally on the basal surface of the oral ectoderm in 36 hpf prism larvae, and then clockwise on the ventral ectoderm to the posterior region to complete formation of the SRC network in 48 hpf early plutei. The SRC network was comprised of 7 main tracts: 4 spicule system-associated tracts and 3 spicule system-independent tracts. The network extended short fibers to the larval body surface through the ectoderm, implicating a signal transmission system that receives exogenous signal. Double-stain immunohistochemistry with antibodies to primary mesenchyme cells showed that SRC were not stained by the antibody. In embryos deprived of secondary mesenchyme cell (SMC) by microsurgery, the number of SRC decreased considerably. These two data indicate that SRC are SMC descendants, adding a new member to the SMC lineage.  相似文献   

18.
We describe the structure and function of the toposome, a modified calcium-binding, iron-less transferrin, the first member of a new class of cell adhesion proteins. In addition to the amino acid sequence of the precursor, we determined by Edman degradation the N-terminal amino acid sequences of the mature hexameric glycoprotein present in the egg as well as that of its derived proteolytically modified fragments necessary for development beyond the blastula stage. The approximate C-termini of the fragments were determined by a combination of mass spectrometry and migration in reducing gels before and after deglycosylation. This new member of the transferrin family shows special features which explain its evolutionary adaptation to development and adhesive function in sea urchin embryos: (i) a protease-inhibiting WAP domain, (ii) a 280 amino acid cysteine-less insertion in the C-terminal lobe, and (iii) a 240 residue C-terminal extension with a modified cystine knot motif found in multisubunit external cell surface glycoproteins. Proteolytic removal of the N-terminal WAP domain generates the mature toposome present in the oocyte. The modified cystine knot motif stabilizes cell-bound trimers upon Ca-dependent dissociation of hexamer-linked cells. We determined the positions of the developmentally regulated cuts in the cysteine-less insertion, which produce the fragments observed previously. These fragments remain bound to the hexameric 22S particle in vivo and are released only after treatment of the purified toposome with reducing agents. In addition, some soluble smaller fragments with possible signal function are produced. Sequence comparison of five sea urchin species reveals the location of the cell-cell contact site targeted by the species-specific embryo dissociating antibodies. The evolutionary tree of 2-, 1-, and 0-ferric transferrins implies their evolution from a basic cation-activated allosteric design modified to serve multiple functions.  相似文献   

19.
We performed experiments to determine how environmentally relevant ultraviolet radiation (UVR) affects protein expression during early development in the sea urchin, Strongylocentrotus purpuratus. To model the protein-mediated cell cycle response to UV-irradiation, six batches of embryos were exposed to UVR, monitored for both delays in the first mitotic division and changes in the proteome at two specific developmental time points. Embryos were exposed to or protected from artificial UVR (11.5 W/m2) for 25 or 60 min. These levels of UVR are within the range we have measured in coastal waters between 0.5 and 2 m. Embryos treated with UVR for 60 min cleaved an average of 23.2 min (± 1.92 s.e.m.) after UV-protected embryos. Differential protein spot migration between UV-protected and UV-treated embryos was examined at 30 and 90 min post-fertilization using two-dimensional SDS-PAGE (2D GE). A total of 1306 protein spots were detected in all gels, including differences in 171 protein spots (13% of the detected proteome) in UV-treated embryos at 30 min post-fertilization and 187 spots (14%) at 90 min post-fertilization (2-way ANOVA, P = 0.03, n = 6). The majority of the proteins affected by UVR were subsequently identified using matrix assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS). Our results indicate UVR affects proteins from multiple cellular pathways and indicate that the mechanisms involved in UV-stress and UV-induced developmental delay in sea urchin embryos are integrated among multiple pathways for cellular stress, protein turnover and translation, signal transduction, cytoskeletal dynamics, and general metabolism.  相似文献   

20.
SpSHR2 is a member of the nuclear receptor superfamily, expressed in embryos, larvae, and adult tissues of sea urchin. During embryonic development, two receptor isoforms are produced via alternative splicing. One exhibits the typical structure of nuclear receptors (SpSHR2-full length), whereas the other is missing the entire LBD (SpSHR2-splice variant). DNA-constructs encoding these isoforms and two additional in vitro generated deletion mutants were engineered in an expression vector carrying the myc-tag. Expression of the tagged isoforms in S. purpuratus embryos showed that the exogenous SpSHR2 full-length protein displays a similar subcellular localization as the endogenous receptor. In early cleavage stages (4-cells), the full-length isoform is predominantly localized in the nucleus, whereas two cell divisions later (16-cells) protein accumulations are detected in both the nucleus and cytoplasm. To the contrary, the SpSHR2-splice variant is confined in the embryonic nuclei both at 4- and 16-cell stage embryos. Analysis of the intracellular distribution of two receptor mutants, one having a deletion within the DBD (DeltaP) and the other a truncation of the C-terminal F-domain (DeltaF), revealed that DeltaP is localized similarly to full-length receptor, whereas DeltaF is maintained in the nucleus, similar to the SpSHR2 splice variant. Investigation of the DNA binding and dimerization properties of the two SpSHR2 isoforms demonstrated that they recognize and bind to a DR1-element as monomers, whereas DeltaP does not bind DNA and DeltaF binds to DR1 poorly. These results suggest that the receptor's putative LBD is responsible for the differential subcellular localization of the two natural SpSHR2-isoforms in early development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号