首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates.  相似文献   

2.
3.
4.
5.
6.
7.
To elucidate the mechanisms of early heart morphogenesis in Xenopus laevis, we examined the effect of endoderm on heart morphogenesis in the early Xenopus neurula. Explants of anterior ventral (presumptive heart) mesoderm from early neurula were cultured alone or in combination with endoderm dissected from various regions. Heart formation was scored by an original heart index based on morphology. These explant studies revealed that anterior ventral endoderm plays a critical role in heart morphogenesis. Furthermore, we found that it was possible to confer this heart-forming ability on posterior ventral endoderm by the injection of poly(A)+ RNA from stage 13 anterior endoderm. These results imply that the heart formative factor(s) is localized in the anterior endoderm of the early neurula and that at least part of this activity is encoded by mRNA(s).  相似文献   

8.
The ability of undifferentiated cardiogenic mesoderm to generate diversified myogenic phenotypes was assayed in a minimal culture system. During cardiogenesis in vivo, the anterior and posterior segments of the avian heart have distinct patterns of contractile protein gene expression when they first differentiate. To assess the potential of undifferentiated cardiogenic tissue to diversify into distinct anterior and posterior lineages prior to heart formation, cardiogenic mesoderm and endoderm were removed together from the embryo at Hamburger and Hamilton stages 4-8. Explants from each of these stages differentiated in defined medium as indicated by the expression of muscle-specific genes. However, the ability to express the atrial-specific myosin heavy chain (AMHC1) mRNA was confined to posterior cardiac progenitors. Diversification was not dependent on anterior endoderm, suggesting that inductive interactions between the mesoderm and endoderm are not necessary to maintain diversified cardiac lineages after stage 4. The diversified potential of explanted cardiogenic tissue was altered with retinoic acid treatment, resulting in the activation of AMHC1 gene expression in the anterior progenitors. Anterior cardiogenic cells removed from the embryo at stage 8, when the heart begins to differentiate in vivo, are not susceptible to the alteration of diversified phenotype by retinoic acid treatment. Therefore, the potential to form distinct cardiomyogenic cell lineages is present in the anterior lateral plate mesoderm soon after gastrulation and the maturation of these lineages in a positionally dependent manner is maintained in a simple defined culture system in vitro.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.

Background

Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define.

Methodology/Principal Findings

To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/β-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation.

Conclusions/Significance

We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/β-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号