首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal cancer (CRC). Here, we use the adult Drosophila midgut and the mouse small intestine to directly address the role of Rac1 in ISC proliferation and tissue regeneration in response to damage. Our results demonstrate that Rac1 is necessary and sufficient to drive ISC proliferation and regeneration in an ROS-dependent manner. Our data point to an evolutionarily conserved role of Rac1 in intestinal homeostasis and highlight the value of combining work in the mammalian and Drosophila intestine as paradigms to study stem cell biology.  相似文献   

16.
17.
18.
19.
20.
Inflammatory bowel disease (IBD), which is characterized by chronic or recurring inflammation of the gastrointestinal tract, affects 1.4 million persons in the United States alone. KLF5, a Krüppel-like factor (KLF) family member, is expressed within the epithelia of the gastrointestinal tract and has been implicated in rapid cell proliferation, migration, and remodeling in a number of tissues. Given these functions, we hypothesized that constitutive Klf5 expression would protect against the development of colitis in vivo. To examine the role of KLF5 in vivo, we used the Villin promoter to target Klf5 to the entire horizontal axis of the small intestine and colon. Villin-Klf5 transgenic mice were born at normal Mendelian ratios and appeared grossly normal to at least 1 year of age. Surprisingly, there were no significant changes in cell proliferation or in the differentiation of any of the intestinal lineages within the duodenum, jejunum, ileum, and colon of Villin-Klf5 mice, compared to littermate controls. However, when Villin-Klf5 mice were treated with dextran sodium sulfate (DSS) to induce colitis, they developed less colonic injury and significantly reduced disease activity scores than littermate controls. The mechanism for this decreased injury may come via JAK-STAT signaling, the activation of which was increased in colonic mucosa of DSS treated Villin-Klf5 mice compared to controls. Thus, KLF5 and its downstream mediators may provide therapeutic targets and disease markers for IBD or other diseases characterized by injury and disruption of intestinal epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号