首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The vertebrate retina develops from a sheet of neuroepithelial cells. Because adherens and tight junctions are critical for epithelial and neuronal differentiation in a variety of eukaryotic systems, we examined the role of Par-3, a PDZ scaffold protein that is critical in cellular membrane junction formation. We cloned the zebrafish Par-3 ortholog (pard3), which encodes two Pard3 proteins (150 and 180 kDa) that differ in their carboxyl-terminus. Immunohistochemistry revealed that Pard3 localized to the apical region of the retinal and brain neuroepithelium, partially overlapping the adherens junction-associated actin bundles. After retinal lamination, the Pard3 protein was restricted to the outer limiting membrane and the outer and inner plexiform layers in the retina. Reducing Pard3 expression with antisense morpholinos caused loss of the retinal pigmented epithelia, disruption of retinal lamination, and cell death in the ventral diencephalon, which resulted in cyclopia. Overexpressing Pard3 by injection of wild-type pard3 mRNA resulted in cyclopia and eyeless embryos. Thus, Pard3 plays a critical role in the origination and separation of zebrafish eye fields and retinal lamination.  相似文献   

3.
4.
The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS.  相似文献   

5.
PRIMA-1 has been identified as a compound that restores the transactivation function to mutant p53 and induces apoptosis in cells expressing mutant p53. Studies on subcellular distribution of the mutant p53 protein upon treatment with PRIMA-1Met, a methylated form of PRIMA-1, have suggested that redistribution of mutant p53 to nucleoli may play a role in PRIMA-1 induced apoptosis. Here, we specifically investigated the influence of PRIMA-1 on cellular localization of mutated p53-R280K endogenously expressed in tumour cells. By using immunofluorescence staining, we found a strong nucleolar redistribution of mutant p53 following PRIMA-1 treatment. This subcellular localization was associated to p53 degradation via ubiquitylation. When cells were treated with adriamycin, neither nucleolar redistribution nor mutant p53 down modulation and degradation were observed. Interestingly, cells where p53-R280K was silenced were more sensitive to PRIMA-1 than the parental ones. These results indicate that in some cellular context, the cell sensitivity to PRIMA-1 could depend on the abolition of a gain-of-function activity of the mutated p53, through a protein degradation pathway specifically induced by this compound.  相似文献   

6.
7.
8.
9.
10.
Fu X  Sun H  Klein WH  Mu X 《Developmental biology》2006,299(2):424-437
During vertebrate retinal development, the seven retinal cell types differentiate sequentially from a single population of retinal progenitor cells (RPCs) and organize themselves into a distinct laminar structure. The purpose of this study was to determine whether beta-catenin, which functions both as a nuclear effector for the canonical Wnt signaling pathway and as a regulator of cell adhesion, is required for retinal neurogenesis or lamination. We used the Cre-loxP system to either eliminate beta-catenin or to express a constitutively active form during retinal neurogenesis. Eliminating beta-catenin did not affect cell differentiation, but did result in the loss of the radial arrangement of RPCs and caused abnormal migration of differentiated neurons. As a result, the laminar structure was massively disrupted in beta-catenin-null retinas, although all retinal cell types still formed. In contrast to other neural tissues, eliminating beta-catenin did not significantly reduce the proliferation rate of RPCs; likewise, activating beta-catenin ectopically in RPCs did not result in overproliferation, but loss of neural retinal identity. These results indicate that beta-catenin is essential during retinal neurogenesis as a regulator of cell adhesion but not as a nuclear effector of the canonical Wnt signaling pathway. The results further imply that retinal lamination and retinal cell differentiation are genetically separable processes.  相似文献   

11.
Smad2 and Smad3, two essential nuclear effectors of transforming growth factor (Tgf)-β signals, have been found to be implicated in mesoderm and endoderm development in vertebrate embryos. However, their roles in the induction and patterning of the neuroectoderm are not well established. In this study, we show that interference with Smad2/3 activities in zebrafish embryos, by injecting dnsmad3b mRNA encoding a dominant negative Smad3b mutant, inhibits the expression of the early neural markers sox2 and sox3 at the onset of gastrulation and results in reduction of the anterior neuroectodermal marker otx2 as well as the posterior neuroectodermal marker hoxb1b during late gastrulation, suggesting a role of Smad2/3 activities in neural induction. Conversely, excess Smad2/3 activities, caused by injecting smad3b mRNA, lead to an enhancement of sox2 and sox3 expression in the ventral domains but an inhibition of their expression in the dorsalmost region at early stages. Overexpression of smad3b also causes ventral expansion of the otx2 and hoxb1b expression domains accompanied with rostral shift of the hoxb1b domain at late gastrulation stages. Collectively, these data indicate that Smad2/3 activities are required for neural induction and neuroectodermal posteriorization in zebrafish. Knockdown of chordin partially inhibits effect of smad3b overexpression on neural induction, implying that Smad2/3 exert their effect on neural induction in part by regulating the expression of Bmp antagonists. Furthermore, down-regulation or up-regulation of Smad2/3 activities in MZoep mutant embryos, which lack the organizer and mesendodermal tissues due to deficiency of Nodal signaling, still affects induction and patterning of the neuroectoderm, suggesting that Smad2/3 activities are implicated in neural development in the absence of the organizer and mesendodermal tissues. We additionally demonstrate that Smad2/3 activities cooperate with Wnt and Fgf signals in neural development. Thus, Smad2/3 activities play important roles not only in mesendodermal development but also in neural development during early vertebrate embryogenesis.  相似文献   

12.
13.
DNA methylation is one of the key mechanisms underlying the epigenetic regulation of gene expression. During DNA replication, the methylation pattern of the parent strand is maintained on the replicated strand through the action of Dnmt1 (DNA Methyltransferase 1). In mammals, Dnmt1 is recruited to hemimethylated replication foci by Uhrf1 (Ubiquitin-like, Containing PHD and RING Finger Domains 1). Here we show that Uhrf1 is required for DNA methylation in vivo during zebrafish embryogenesis. Due in part to the early embryonic lethality of Dnmt1 and Uhrf1 knockout mice, roles for these proteins during lens development have yet to be reported. We show that zebrafish mutants in uhrf1 and dnmt1 have defects in lens development and maintenance. uhrf1 and dnmt1 are expressed in the lens epithelium, and in the absence of Uhrf1 or of catalytically active Dnmt1, lens epithelial cells have altered gene expression and reduced proliferation in both mutant backgrounds. This is correlated with a wave of apoptosis in the epithelial layer, which is followed by apoptosis and unraveling of secondary lens fibers. Despite these disruptions in the lens fiber region, lens fibers express appropriate differentiation markers. The results of lens transplant experiments demonstrate that Uhrf1 and Dnmt1 functions are required lens-autonomously, but perhaps not cell-autonomously, during lens development in zebrafish. These data provide the first evidence that Uhrf1 and Dnmt1 function is required for vertebrate lens development and maintenance.  相似文献   

14.
Fgf signaling plays crucial roles in morphogenesis. Fgf19 is required for zebrafish forebrain development. Here, we examined the roles of Fgf19 in the formation of the lens and retina in zebrafish. Knockdown of Fgf19 caused a size reduction of the lens and the retina, failure of closure of the choroids fissure, and a progressive expansion of the retinal tissue to the midline of the forebrain. Fgf19 expressed in the nasal retina and lens was involved in cell survival but not cell proliferation during embryonic lens and retina development. Fgf19 was essential for the differentiation of lens fiber cells in the lens but not for the neuronal differentiation and lamination in the retina. Loss of nasal fate in the retina caused by the knockdown of Fgf19, expansion of nasal fate in the retina caused by the overexpression of Fgf19 and eye transplantation indicated that Fgf19 in the retina was crucial for the nasal-temporal patterning of the retina that is critical for the guidance of retinal ganglion cell axons. Knockdown of Fgf19 also caused incorrect axon pathfinding. The present findings indicate that Fgf19 positively regulates the patterning and growth of the retina, and the differentiation and growth of the lens in zebrafish.  相似文献   

15.
16.
17.
18.
19.
The cordon-bleu (Cobl) gene is widely conserved in vertebrates, with developmentally regulated axial and epithelial expression in mouse and chick embryos. In vitro, Cobl can bind monomeric actin and nucleate formation of unbranched actin filaments, while in cultured cells it can modulate the actin cytoskeleton. However, an essential role for Cobl in vivo has yet to be determined. We have used zebrafish as a model to assess the requirements for Cobl in embryogenesis. We find that cobl shows enriched expression in ciliated epithelial tissues during zebrafish organogenesis. Cobl protein is enriched in the apical domain of ciliated cells, in close proximity to the apical actin cap. Reduction of Cobl by antisense morpholinos reveals an essential role in development of motile cilia in organs such as Kupffer's vesicle and the pronephros. In Kupffer's vesicle, the reduction in Cobl coincides with a reduction in the amount of apical F-actin. Thus, Cobl represents a molecular activity that couples developmental patterning signals with local intracellular cytoskeletal dynamics to support morphogenesis of motile cilia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号