首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Talin, which is composed of head (THD) and rod domains, plays an important role in cell adhesion events in diverse species including most metazoans and Dictyostelium discoideum. Talin is abundant in the cytosol; however, it mediates adhesion by associating with integrins in the plasma membrane where it forms a primary link between integrins and the actin cytoskeleton. Cells modulate the partitioning of talin between the plasma membrane and the cytosol to control cell adhesion. Here, we combine nuclear magnetic resonance spectroscopy (NMR) with subcellular fractionation to characterize two distinct THD-rod domain interactions that control the interaction of talin with the actin cytoskeleton or its localization to the plasma membrane. An interaction between a discrete vinculin-binding region of the rod (VBS1/2a; Tln1(482-787)), and the THD restrains talin from interacting with the plasma membrane. Furthermore, we show that vinculin binding to VBS1/2a results in talin recruitment to the plasma membrane. Thus, we have structurally defined specific inter-domain interactions between THD and the talin rod domain that regulate the subcellular localization of talin.  相似文献   

2.
Spred/Sprouty family proteins negatively regulate growth factor-induced ERK activation. Although the individual physiological roles of Spred-1 and Spred-2 have been investigated using gene-disrupted mice, the overlapping functions of Spred-1 and Spred-2 have not been clarified. Here, we demonstrate that the deletion of both Spred-1 and Spred-2 resulted in embryonic lethality at embryonic days 12.5 to 15.5 with marked subcutaneous hemorrhage, edema, and dilated lymphatic vessels filled with erythrocytes. This phenotype resembled that of Syk−/− and SLP-76−/− mice with defects in the separation of lymphatic vessels from blood vessels. The number of LYVE-1-positive lymphatic vessels and lymphatic endothelial cells increased markedly in Spred-1/2-deficient embryos compared with WT embryos, while the number of blood vessels was not different. Ex vivo colony assay revealed that Spred-1/2 suppressed lymphatic endothelial cell proliferation and/or differentiation. In cultured cells, the overexpression of Spred-1 or Spred-2 strongly suppressed vascular endothelial growth factor-C (VEGF-C)/VEGF receptor (VEGFR)-3-mediated ERK activation, while Spred-1/2-deficient cells were extremely sensitive to VEGFR-3 signaling. These data suggest that Spreds play an important role in lymphatic vessel development by negatively regulating VEGF-C/VEGFR-3 signaling.  相似文献   

3.
4.
Cerebral cavernous malformations are vascular defects of the central nervous system consisting of clusters of dilated vessels that are subject to frequent hemorrhaging. The genes mutated in three forms of autosomal dominant cerebral cavernous malformations have been cloned, but it remains unclear which cell type is ultimately responsible for the lesion. In this article we describe mice with a gene trap insertion in the Ccm2 gene. Consistent with the human phenotype, heterozygous animals develop cerebral vascular malformations, although penetrance is low. β-galactosidase activity in heterozygous brain and in situ hybridization in wild-type brain revealed Ccm2 expression in neurons and choroid plexus but not in vascular endothelium of small vessels in the brain. The expression pattern of Ccm2 is similar to that of the Ccm1 gene and its interacting protein ICAP1 (Itgb1bp1). These data suggest that cerebral cavernous malformations arise as a result of defects in the neural parenchyma surrounding the vascular endothelial cells in the brain. Nicholas W. Plummer, Teresa L. Squire and Sudha Srinivasan contributed equally to this work.  相似文献   

5.
In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (≈50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the pathogenesis of spirochetal infection.  相似文献   

6.
Using a talin2 gene-trapped embryonic stem cell clone, we have developed a talin2 mutant mouse line that expresses the N-terminal half (1-1295) of talin2 fused with beta-galactosidase. The homozygous mutant mice appear to be normal and healthy. In the testis, talin2 expresses as a shorter form with a unique 30 residues at N-terminus linking to a common C-terminus from 1122 to 2453 of the long form. The resulting talin2 in the mutant testis only contains 204 residues of the wild-type testis talin2. However, it did not seem to affect the morphology of testis or reproduction of male mice. In fact, male and female mutant mice are fertile. Utilizing the expression of talin2(1-1295)/beta-galactosidase fusion protein, we have examined the distribution of talin2 in tissues. In contrast to talin1, talin2 expression is more restricted in tissues and cell types.  相似文献   

7.
8.
Yang X  Gong Y  Friesel R 《PloS one》2011,6(4):e18374

Background

Development of the hematopoietic and endothelial lineages derives from a common mesodermal precursor, the Flk1+ hemangioblast. However, the signaling pathways that regulate the development of hematopoietic and endothelial cells from this common progenitor cell remains incompletely understood. Using mouse models with a conditional Spry1 transgene, and a Spry1 knockout mouse, we investigated the role of Spry1 in the development of the endothelial and hematopoietic lineages during development.

Methodology/Principal Findings

Quantitative RT-PCR analysis demonstrates that Spry1, Spry2, and Spry4 are expressed in Flk1+ hemangioblasts in vivo, and decline significantly in c-Kit+ and CD41+ hematopoietic progenitors, while expression is maintained in developing endothelial cells. Tie2-Cre-mediated over-expression of Spry1 results in embryonic lethality. At E9.5 Spry1;Tie2-Cre embryos show near normal endothelial cell development and vessel patterning but have reduced hematopoiesis. FACS analysis shows a reduction of primitive hematopoietic progenitors and erythroblastic cells in Spry1;Tie2-Cre embryos compared to controls. Colony forming assays confirm the hematopoietic defects in Spry1;Tie2-Cre transgenic embryos. Immunostaining shows a significant reduction of CD41 or CD71 and dpERK co-stained cells in Spry1;Tie2-Cre embryos compared to controls, whereas the number of VEC+ and dpERK co-stained cells is comparable. Compared to controls, Spry1;Tie2-Cre embryos also show a decrease in proliferation and an increase in apoptosis. Furthermore, loss of Spry1 results in an increase of CD41+ and CD71+ cells at E9.5 compared with controls.

Conclusions/Significance

These data indicate that primitive hematopoietic cells derive from Tie2-expressing hemangioblasts and that Spry1 over expression inhibits primitive hematopoietic progenitor and erythroblastic cell development and expansion while having no obvious effect on endothelial cell development.  相似文献   

9.
Vinculin and talin are two major components of focal contacts which interact with each other. In order to understand how the relative levels of these proteins are maintained under various conditions, the synthesis rates and half-lives of vinculin and talin in chick embryonic fibroblasts were determined by autoradiography combined with immunoblotting. High cell density and transformation by Rous sarcoma virus decreased the vinculin synthesis rate by 40%. Upon viral transformation, the synthesis rate of talin decreased by 30%. In contrast to vinculin, the synthesis rate of talin was not affected by cell density. The effect of cell density on the synthesis rate of vinculin was retained after viral transformation, suggesting that cell density and viral transformation affect vinculin synthesis by two independent mechanisms. The synthesis rate of vinculin was approximately two to three times greater than that of talin under all conditions tested. The half-lives of vinculin and talin remained constant at different cell densities in untransformed cells (t1/2= 18–21 h), but transformation slightly decreased half-lives of both proteins (t1/2= 16–18 h). These results suggest that the decreased expression of vinculin and talin in transformed chick fibroblasts can be attributed mainly to changes in their biosynthesis rates rather than degradation. This may contribute to a decrease in the number of focal contacts in transformed cells.  相似文献   

10.

Background

In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis.

Methodology/Principal Findings

Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis.

Conclusions/Significance

This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.  相似文献   

11.

Background

Coronary bypass graft failure as a result of acute thrombosis and intimal hyperplasia has been the major challenge in surgical procedures involving small-diameter vascular prosthesis. Coating synthetic grafts with patients'' own endothelial cells has been suggested to improve the patency rate and overall success of bypass surgeries.

Methodology/Principal Findings

We isolated endothelial progenitor cells (EPCs) from leftover pieces of human saphenous vein/mammary artery. We demonstrate that EPCs can be expanded to generate millions of cells under low-density culture conditions. Exposure to high-density conditions induces differentiation to endothelial cell phenotype. EPC–derived endothelial cells show expression of CD144high, CD31, and vWF. We then assessed the ability of differentiated endothelial cells to adhere and grow on small diameter expanded polytetrafluoroethylene (ePTFE) tubings. Since ePTFE tubings are highly hydrophobic, we optimized protocols to introduce hydrophilic groups on luminal surface of ePTFE tubings. We demonstrate here a stepwise protocol that involves introduction of hydrophilic moieties and coating with defined ECM components that support adhesion of endothelial cells, but not of blood platelets.

Conclusion/Significance

Our data confirms that endothelial progenitors obtained from adult human blood vessels can be expanded in vitro under xenoprotein-free conditions, for potential use in endothelialization of small diameter ePTFE grafts. These endothelialized grafts may represent a promising treatment strategy for improving the clinical outcome of small-caliber vascular grafts in cardiac bypass surgeries.  相似文献   

12.
13.
14.

Background

One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.

Methodology/Principal Findings

We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.

Conclusions/Significance

The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development.  相似文献   

15.
Repulsive guidance molecule (RGM) a is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein that has been implicated in chemorepulsive axon guidance. Although RGMa binds the transmembrane receptor Neogenin, the developmental events controlled by the RGMa-Neogenin interactions in vivo remain largely unknown. We have cloned full-length RGMa from Xenopus borealis for the first time and identified two homologous genes referred to as RGMa1 and RGMa2. Here we show RGMa1 overexpression at 2-cell-stage resulted in cell death, which lead to an early embryonic lethal phenotype of the embryos. Time-lapse photomicroscopy revealed that embryos began to show initial morphological defects from ∼5 h post-fertilization (hpf) which was then followed by extensive blastomere cell death at ∼11 hpf. This phenotype was rescued by simultaneous knock down of RGMa using translation blocking anti-sense morpholinos. Knock down of the RGMa1 receptor Neogenin in RGMa1 overexpressing embryos was also able to rescue the phenotype. Together these results indicated that RGMa1 was signalling through Neogenin to induce cell death in the early embryo. While previous studies have suggested that Neogenin is a dependence receptor that induces cell death in the absence of RGM, we have instead shown that Neogenin-RGM interactions induce cell death in the early embryo. The roles of RGMa1 and Neogenin appear to be context specific so that their co-ordinated and regulated expressions are essential for normal development of the vertebrate embryo.  相似文献   

16.
UCB (human umbilical cord blood) contains cells able to differentiate into non‐haematopoietic cell lineages. It also contains cells similar to primitive ESCs (embryonic stem cells) that can differentiate into pancreatic‐like cells. However, few data have been reported regarding the possibility of expanding these cells or the differential gene expression occurring in vitro. In this study, we expanded formerly frozen UCB cells by treatment with SCF (stem cell factor) and GM‐CSF (granulocyte–macrophage colony stimulating factor) in the presence of VPA (valproic acid). Gene expression profiles for beta cell differentiation and pluripotency (embryo stem cell phenotype) were analysed by RT‐PCR and immunocytochemistry. The results show a dramatic expansion (>150‐fold) of haematopoietic progenitors (CD45+/CD133+) which also expressed embryo markers of pluripotency (nanog, kfl‐4, sox‐2, oct‐3/4 andc‐myc), nestin, and pancreatic markers such as pax‐4, ngn‐3, pdx‐1 and syt‐1 (that is regulated by pdx‐1 and provides the cells with a Ca++ regulation mechanism essential for insulin exocytosis). Our results show that UCB cells can be expanded to produce large numbers of cells of haematopoietic lineage that naturally (without the need of retroviral vectors or transposons) express a gene pattern compatible with endocrine pancreatic precursors and markers of pluripotency. Further investigations are necessary to clarify, first, whether in this context, the embryogenes expressed are functional or not, and secondly, since these cells are safer than cells transfected with retroviral vectors or transposons, whether they would represent a potential tool for clinical application.  相似文献   

17.
Talin2 plays an important role in transduction of mechanical signals between extracellular matrix and actin cytoskeleton. Recent studies showed that talin2 is localized to invadopodia and regulates their maturation, subsequently cancer cell invasion and metastasis. However, the molecular mechanism whereby talin2 mediates invadopodium maturation is unknown. Here we show that ablation of talin2 in MDA-MB-231 cells inhibited the secretion of matrix metallopeptidase 9 (MMP9), a proteinase involved in extracellular matrix degradation in invadopodium maturation and metastasis. Furthermore, re-expression of talin2WT in talin2-KO cells rescued MMP9 secretion, but talin2S339C, a mutant with reduced β-integrin binding, did not, indicating that the talin2-β-integrin interaction is involved in the MMP9 secretion. Moreover, ablation of talin2 caused an accumulation of enlarged MMP9 vesicles. These vesicles co-localized with enlarged early, late endosomes and autophagosomes, suggesting talin2 controls MMP9 trafficking process. Therefore, these data suggest that talin2 regulates extracellular matrix degradation and invadopodium maturation by mediating MMP9 secretion.  相似文献   

18.
Endothelial cells are specialized epithelium lining the interior surface of vessels and play fundamental roles in angiogenesis, vascular permeability, and immune response. To identify endothelial cells in vivo, we constructed a Pecam1nlacZ‐H2B‐GFP/+ knock‐in mouse model in which the endothelial cells are labeled by nuclear LacZ (nlacZ) expression. When Pecam1nlacZ‐H2B‐GFP/+ mice are bred with germline Cre deleter mice, Pecam1H2B‐GFP/+ line is created with native nuclear GFP (H2B‐GFP) expression in the endothelium of various organs. This dual reporter mouse provides us with a powerful genetic tool for definitive identification of endothelial cells and monitoring this important cell population throughout development, homeostasis, and disease conditions in mammals.  相似文献   

19.
20.
Microparticles (MPs) are small membrane‐vesicles that accumulate in the synovial fluids of patients with rheumatoid arthritis (RA). In the arthritic joints, MPs induce a pro‐inflammatory and invasive phenotype in synovial fibroblasts (SFs). The present study investigated whether activation of SFs by MPs stimulates angiogenesis in the inflamed joints of patients with RA. MPs were isolated from Jurkat cells and U937 cells by differential centrifugation. SFs were co‐cultured with increasing numbers of MPs. The effects of supernatants from co‐cultures on endothelial cells were studied in vitro and in vivo using MTT assays, annexin V and propidium iodide staining, trans‐well migration assays and modified matrigel pouch assays. MPs strongly induced the expression of the pro‐angiogenic ELR+ chemokines CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6 in RASFs. Other vascular growth factors were not induced. Supernatants from co‐cultures enhanced the migration of endothelial cells, which could be blocked by neutralizing antibodies against ELR+ chemokines. Consistent with the specific induction of ELR+ chemokines, proliferation and viability of endothelial cells were not affected by the supernatants. In the in vivo bio‐chamber assay, supernatants from RASFs co‐cultured with MPs stimulated angiogenesis with a significant increase of vessels infiltrating into the matrigel chamber. We demonstrated that MPs activate RASFs to release pro‐angiogenic ELR+ chemokines. These pro‐angiogenic mediators enhance migration of endothelial cells and stimulate the formation of new vessels. Our data suggest that MPs may contribute to the hypervascularization of inflamed joints in patients with rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号