首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Zyxin links fat signaling to the hippo pathway   总被引:1,自引:0,他引:1  
Rauskolb C  Pan G  Reddy BV  Oh H  Irvine KD 《PLoS biology》2011,9(6):e1000624
  相似文献   

2.
3.
Signaling via the large protocadherin Fat (Ft), regulated in part by its binding partner Dachsous (Ds) and the Golgi-resident kinase Four-jointed (Fj), is required for a variety of developmental functions in Drosophila. Ft and, to a lesser extent, Ds suppress overgrowth of the imaginal discs from which appendages develop and regulate the Hippo pathway [1-5] (reviewed in [6]). Ft, Ds, and Fj are also required for normal planar cell polarity (PCP) in the wing, abdomen, and eye and for the normal patterning of appendages, including the spacing of crossveins in the wing and the segmentation of the leg tarsus (reviewed in [7-9]). Ft signaling was recently shown to be negatively regulated by the atypical myosin Dachs [10, 11]. We identify here an additional negative regulator of Ft signaling in growth control, PCP, and appendage patterning, the Approximated (App) protein. We show that App encodes a member of the DHHC family, responsible for the palmitoylation of selected cytoplasmic proteins, and provide evidence that App acts by controlling the normal subcellular localization and activity of Dachs.  相似文献   

4.
In the Drosophila wing, distal cells signal to proximal cells to induce the expression of Wingless, but the basis for this distal-to-proximal signaling is unknown. Here, we show that three genes that act together during the establishment of tissue polarity, fat, four-jointed and dachsous, also influence the expression of Wingless in the proximal wing. fat is required cell autonomously by proximal wing cells to repress Wingless expression, and misexpression of Wingless contributes to proximal wing overgrowth in fat mutant discs. Four-jointed and Dachsous can influence Wingless expression and Fat localization non-autonomously, consistent with the suggestion that they influence signaling to Fat-expressing cells. We also identify dachs as a gene that is genetically required downstream of fat, both for its effects on imaginal disc growth and for the expression of Wingless in the proximal wing. Our observations provide important support for the emerging view that Four-jointed, Dachsous and Fat function in an intercellular signaling pathway, identify a normal role for these proteins in signaling interactions that regulate growth and patterning of the proximal wing, and identify Dachs as a candidate downstream effector of a Fat signaling pathway.  相似文献   

5.
6.
The dachs gene was first identified almost a century ago based on its requirements for appendage growth, but has been relatively little studied. Here, we describe the phenotypes of strong dachs mutations, report the cloning of the dachs gene, characterize the localization of Dachs protein, and investigate the relationship between Dachs and the Fat pathway. Mutation of dachs reduces, but does not abolish, the growth of legs and wings. dachs encodes an unconventional myosin that preferentially localizes to the membrane of imaginal disc cells. dachs mutations suppress the effects of fat mutations on gene expression, cell affinity and growth in imaginal discs. Dachs protein localization is influenced by Fat, Four-jointed and Dachsous, consistent with its genetic placement downstream of fat. However, dachs mutations have only mild tissue polarity phenotypes, and only partially suppress the tissue polarity defects of fat mutants. Our results implicate Dachs as a crucial downstream component of a Fat signaling pathway that influences growth, affinity and gene expression during development.  相似文献   

7.
The Fat pathway controls both planar cell polarity (PCP) and organ growth. Fat signaling is regulated by the graded expression of the Fat ligand Dachsous (Ds) and the cadherin-domain kinase Four-jointed (Fj). The vectors of these gradients influence PCP, whereas their slope can influence growth. The Fj and Ds gradients direct the polarized membrane localization of the myosin Dachs, which is a crucial downstream component of Fat signaling. Here we show that repolarization of Dachs by differential expression of Fj or Ds can propagate through the wing disc, which indicates that Fj and Ds gradients can be measured over long range. Through characterization of tagged genomic constructs, we show that Ds and Fat are themselves partially polarized along the endogenous Fj and Ds gradients, providing a mechanism for propagation of PCP within the Fat pathway. We also identify a biochemical mechanism that might contribute to this polarization by showing that Ds is subject to endoproteolytic cleavage and that the relative levels of Ds isoforms are modulated by Fat.  相似文献   

8.
9.
SS Blair 《Current biology : CB》2012,22(14):R567-R569
Several spatial cues combine to influence cell polarity within the plane of?the?Drosophila wing epithelium, orienting two separable mechanisms of?short-range intercellular communication, one utilizing the 'core' polarity proteins, and another utilizing the protocadherins Dachsous and Fat, and the atypical myosin Dachs.  相似文献   

10.
Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal–distal (P–D) axis by the Dachsous‐Fat‐Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P–D axis despite strong Dachs polarization. Here, we show that these circumferential divisions are oriented by circumferential mechanical forces that influence cell shapes and thus orient the mitotic spindle. We propose that this circumferential pattern of force is not generated locally by polarized constriction of individual epithelial cells. Instead, these forces emerge as a global tension pattern that appears to originate from differential rates of cell proliferation within the wing pouch. Accordingly, we show that localized overgrowth is sufficient to induce neighbouring cell stretching and reorientation of cell division. Our results suggest that patterned rates of cell proliferation can influence tissue mechanics and thus determine the orientation of cell divisions and tissue shape.  相似文献   

11.
Morphogen control of wing growth through the Fat signaling pathway   总被引:1,自引:0,他引:1  
Organ growth is influenced by organ patterning, but the molecular mechanisms that link patterning to growth have remained unclear. We show that the Dpp morphogen gradient in the Drosophila wing influences growth by modulating the activity of the Fat signaling pathway. Dpp signaling regulates the expression and localization of Fat pathway components, and Fat signaling through Dachs is required for the effect of the Dpp gradient on cell proliferation. Juxtaposition of cells that express different levels of the Fat pathway regulators four-jointed and dachsous stimulates expression of Fat/Hippo pathway target genes and cell proliferation, consistent with the hypothesis that the graded expression of these genes contributes to wing growth. Moreover, uniform expression of four-jointed and dachsous in the wing inhibits cell proliferation. These observations identify Fat as a signaling pathway that links the morphogen-mediated establishment of gradients of positional values across developing organs to the regulation of organ growth.  相似文献   

12.
13.
BACKGROUND: The tight control of cell proliferation and cell death is essential to normal tissue development, and the loss of this control is a hallmark of cancers. Cell growth and cell death are coordinately regulated during development by the Hippo signaling pathway. The Hippo pathway consists of the Ste20 family kinase Hippo, the WW adaptor protein Salvador, and the NDR kinase Warts. Loss of Hippo signaling in Drosophila leads to enhanced cell proliferation and decreased apoptosis, resulting in massive tissue overgrowth through increased expression of targets such as Cyclin E and Diap1. The cytoskeletal proteins Merlin and Expanded colocalize at apical junctions and function redundantly upstream of Hippo. It is not clear how they regulate growth or how they are localized to apical junctions. RESULTS: We find that another Drosophila tumor-suppressor gene, the atypical cadherin fat, regulates both cell proliferation and cell death in developing imaginal discs. Loss of fat leads to increased Cyclin E and Diap1 expression, phenocopying loss of Hippo signaling. Ft can regulate Hippo phosphorylation, a measure of its activation, in tissue culture. Importantly, fat is needed for normal localization of Expanded at apical junctions in vivo. Genetic-epistasis experiments place fat with expanded in the Hippo pathway. CONCLUSIONS: Together, these data suggest that Fat functions as a cell-surface receptor for the Expanded branch of the conserved Hippo growth control pathway.  相似文献   

14.
15.
16.
17.
Recent studies have shown that the Hippo-Salvador-Warts (HSW) pathway restrains tissue growth by phosphorylating and inactivating the oncoprotein Yorkie. How growth-suppressive signals are transduced upstream of Hippo remains unclear. We show that the Sterile 20 family kinase, Tao-1, directly phosphorylates T195 in the Hippo activation loop and that, like other HSW pathway genes, Tao-1 functions to restrict cell proliferation in developing imaginal epithelia. This relationship appears to be evolutionarily conserved, because mammalian Tao-1 similarly affects MST kinases. In S2 cells, Tao-1 mediates the effects of the upstream HSW components Merlin and Expanded, consistent with the idea that Tao-1 functions in tissues to regulate Hippo phosphorylation. These results demonstrate that one family of Ste20 kinases can activate another and identify Tao-1 as a component of the regulatory network controlling HSW pathway signaling, and therefore tissue growth, during development.  相似文献   

18.
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.  相似文献   

19.
20.
A large number of neural and glial cell species differentiate from neuronal precursor cells during nervous system development. Two types of Drosophila optic lobe neurons, lamina and medulla neurons, are derived from the neuroepithelial (NE) cells of the outer optic anlagen. During larval development, epidermal growth factor receptor (EGFR)/Ras signaling sweeps the NE field from the medial edge and drives medulla neuroblast (NB) formation. This signal drives the transient expression of a proneural gene, lethal of scute, and we refer to its signal array as the "proneural wave," as it is the marker of the EGFR/Ras signaling front. In this study, we show that the atypical cadherin Fat and the downstream Hippo pathways regulate the transduction of EGFR/Ras signaling along the NE field and, thus, ensure the progress of NB differentiation. Fat/Hippo pathway mutation also disrupts the pattern formation of the medulla structure, which is associated with the regulation of neurogenesis. A candidate for the Fat ligand, Dachsous is expressed in the posterior optic lobe, and its mutation was observed to cause a similar phenotype as fat mutation, although in a regionally restricted manner. We also show that Dachsous functions as the ligand in this pathway and genetically interacts with Fat in the optic lobe. These findings provide new insights into the function of the Fat/Hippo pathway, which regulates the ordered progression of neurogenesis in the complex nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号