首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Caenorhobditis elegans XX animal possesses a hermaphrodite germ line, producing first sperm, then oocytes. In this paper, we report the genetic identification of five genes, mog-2, mog-3, mog-4, mog-5, and mog-6, that influence the hermaphrodite switch from sper-matogenesis to oogenesis. In mcg-2-mog-6 mutants, spermatogenesis continues past the time at which hermaphrodites normally switch into oogenesis and no oocytes are observed. Therefore, in these mutants, germ cells are transformed from a female fate (oocyte) to a male fate (sperm). The fem-3 gene is one of five genes that acts at the end of the germline sex determination pathway to direct spermatogenesis. Analyses of mog;fem-3 double mutants suggest that the mog-2-mog-6 genes act before fem-3; thus these genes may be in a position to negatively regulate fem-3 or one of the other terminal regulators of germline sex determination. Double mutants of fem-3 and any one of the mog mutations make oocytes. Using these double mutants, we show that oocytes from any mog;fem-3 double mutant are defective in their ability to support embryogenesis. This maternal effect lethality indicates that each of the mog genes is required for embryogenesis. The two defects in mog-2-mog-6 mutants are similar to those of mog-1: all six mog genes eliminate the sperm/oocyte switch in hermaphrodites and cause maternal effect lethality. We propose that the mog-2-mog-6 mutations identify genes that act with mog-1 to effect the sperm/oocyte switch. We further speculate that the mog-1-mog-6 mutations all interfere with translational controls of fem-3 and other maternal mRNAs. © 1993 Wiley-Liss, Inc.  相似文献   

3.
4.
In the germ line of the Caenorhabditis elegans hermaphrodite, nuclei either proliferate through mitosis or initiate meiosis, finally differentiating as spermatids or oocytes. The production of oocytes requires repression of the fem-3 mRNA by cytoplasmic FBF and nuclear MOG proteins. Here we report the identification of the sex determining gene mog-3 and show that in addition to its role in gamete sex determination, it is necessary for meiosis by acting downstream of GLP-1/Notch. Furthermore, we found that MOG-3 binds both to the nuclear proteins MEP-1 and CIR-1. MEP-1 is necessary for oocyte production and somatic differentiation, while the mammalian CIR-1 homolog counters Notch signaling. We propose that MOG-3, MEP-1 and CIR-1 associate in a nuclear complex which regulates different aspects of germ cell development. While FBF triggers the sperm/oocyte switch by directly repressing the fem-3 mRNA in the cytoplasm, the MOG proteins play a more indirect role in the nucleus, perhaps by acting as epigenetic regulators or by controlling precise splicing events.  相似文献   

5.
In Drosophila, the sex of germ cells is determined by autonomous and inductive signals. Somatic inductive signals can drive XX germ cells into oogenesis or into spermatogenesis. An autonomous signal makes XY germ cells male and unresponsive to sex determination by induction. The elements forming the X:A ratio in the soma and the genes tra, tra2, dsx, and ix that determine the sex of somatic cells have no similar role in the germline. The gene Sxl, however, is required for female differentiation of somatic and germ cells. Inductive signals that are dependent on somatic tra and dsx expression already affect the sex-specific development of germ cells of first instar larvae. At this early stage, however, germline expression of Sxl does not appear to affect the sexual characteristics of germ cells. Since inductive signals dependent on tra and dsx nevertheless influence the choice of sex-specific splicing of Sxl, it can be concluded that Sxl is a target of the inductive signal, but that its product is required late for oogenesis. Other genes must therefore control the early sexual dimorphism of larval germ cells. © 1994 Wiley-Liss, Inc.  相似文献   

6.
 In Drosophila melanogaster, regulation of the sex determination genes throughout development occurs by sex-specific splicing of their products. The first gene is Sex-lethal(Sxl). The downstream target of Sxl is the gene transformer (tra): the Sxl protein controls the female-specific splicing of the Tra pre-mRNA. The downstream target of the gene tra is the gene double-sex (dsx): the Tra protein of females, controls the female-specific splicing of the Dsx pre-mRNA. We have identified a gene, female-lethal-2-d fl(2)d, whose function is required for the female-specific splicing of Sxl pre-mRNA. In this report we analyze whether the gene fl(2)d is also required for the sex-specific splicing of both Tra and Dsx pre-mRNAs. We found that the Sxl protein is not sufficient for the female-specific splicing of Tra pre-mRNA, the fl(2)d function also being necessary. This gene, however, is not required for the female-specific splicing of Dsx pre-mRNA. Received:23 May 1996 Accepted:3 July 1996  相似文献   

7.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder of muscular dystrophy characterized by muscle weakness and wasting. DM1 is caused by expansion of CTG repeats in the 3′-untranslated region (3′-UTR) of DM protein kinase (DMPK) gene. Since CUG-repeat RNA transcribed from the expansion of CTG repeats traps RNA-binding proteins that regulate alternative splicing, several abnormalities of alternative splicing are detected in DM1, and the abnormal splicing of important genes results in the appearance of symptoms. In this study, we identify two abnormal splicing events for actinin-associated LIM protein 3 (PDLIM3/ALP) and fibronectin 1 (FN1) in the skeletal muscles of DM1 patients. From the analysis of the abnormal PDLIM3 splicing, we propose that ZASP-like motif-deficient PDLIM3 causes the muscular symptoms in DM. PDLIM3 binds α-actinin 2 in the Z-discs of muscle, and the ZASP-like motif is needed for this interaction. Moreover, in adult humans, PDLIM3 expression is highest in skeletal muscles, and PDLIM3 splicing in skeletal muscles is regulated during human development.  相似文献   

8.
Intron-containing tRNA genes are exceptional within nuclear plant genomes. It appears that merely two tRNA gene families coding for tRNATyr G A and elongator tRNAMet CmAU contain intervening sequences. We have previously investigated the features required by wheat germ splicing endonuclease for efficient and accurate intron excision from Arabidopsis pre-tRNATyr. Here we have studied the expression of an Arabidopsis elongator tRNAMet gene in two plant extracts of different origin. This gene was first transcribed either in HeLa or in tobacco cell nuclear extract and splicing of intron-containing tRNAMet precursors was then examined in wheat germ S23 extract and in the tobacco system. The results show that conversion of pre-tRNAMet to mature tRNA proceeds very efficiently in both plant extracts. In order to elucidate the potential role of specific nucleotides at the 3 and 5 splice sites and of a structured intron for pre-tRNAMet splicing in either extract, we have performed a systematic survey by mutational analyses. The results show that cytidine residues at intron-exon boundaries impair pre-tRNAMet splicing and that a highly structured intron is indispensable for pre-tRNAMet splicing. tRNA precursors with an extended anticodon stem of three to four base pairs are readily accepted as substrates by wheat and tobacco splicing endonuclease, whereas pre-tRNA molecules that can form an extended anticodon stem of only two putative base pairs are not spliced at all. An amber suppressor, generated from the intron-containing elongator tRNAMet gene, is efficiently processed and spliced in both plant extracts.  相似文献   

9.
10.
Genetic mechanisms underlying male sex determination in mammals   总被引:1,自引:0,他引:1  
Genetic control of gonadal development proceeds through either the male or female molecular pathways, driving bipotential gonadal anlage differentiation into a testis or ovary. Antagonistic interactions between the 2 pathways determine the gonadal sex. Essentially sex determination is the enhancement of one of the 2 pathways according to genetic sex. Initially, Sry with other factors upregulatesSox9 expression in XY individuals. Afterwards the expression ofSox9 is maintained by a positive feedback loop withFgf9 and prostaglandin D2 as well as by autoregulative ability of Sox9. If these factors reach high concentrations, then Sox9 and/or Fgf9 may inhibit the female pathway. Surprisingly, splicing, nuclear transport, and extramatrix proteins may be involved in sex determination. The male sex determination pathway switches on the expression of genes driving Sertoli cell differentiation. Sertoli cells orchestrate testicular differentiation. In the absence of Sry, the predomination of the female pathway results in the realization of a robust genetic program that drives ovarian differentiation.  相似文献   

11.
Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF65) cooperatively recognize the 3′ splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF65 splicing factors, as well as the SF1/U2AF65 complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF65/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF65 complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF65 splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF65/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing.  相似文献   

12.
Summary The Up 2 gene of common bean (Phaseolus Vulgaris L.) is an important source of dominant genetic resistance to the bean rust pathogen [Uromyces appendiculatus (Pers. ex Pers.) Unger var appendiculatus [syn U. Phaseoli (Reben) Wint.]. Up 2 in combination with other rust resistance genes may be used to obtain potentially stable genetic resistance. It is difficult, however, to combine rust resistance genes effective against a single race due to epistatic interactions that frequently occur between them. A strategy that employed bulked DNA samples formed separately from the DNA of three BC6F2 individuals with Up 2 and three without Up 2 as contrasting near-isogenic lines (NILs) was used to identify random amplified polymorphic DNA fragments (RAPDs) tightly linked to the Up 2 locus. Only 1 of 931 fragments amplified by 167 10-mer primers of arbitrary sequence in the polymerase chain reaction (PCR) was polymorphic. The RAPD marker (OA141100) amplified by the 5-TCTGTGCTGG-3 primer was repeatable and its presence and absence easy to score. No recombination was observed between OA141100 and the dominant Up 2 allele within a segregating BC6F2 population of 84 individuals. This result suggests that OA141100 and Up 2 are tightly linked. Andean and Mesoamerican bean germ plasm, with and without the Up 2 allele, were assayed for the presence of OA141100. Apparently, the marker is of Andean origin because all Andean lines, with or without the Up 2 allele, contained the marker, and the marker was absent in all Mesoamerican germ plasm except the lines to which Up-2 had been purposely transferred. These results suggest that OA141100 will be most useful for pyramiding Up 2 with other rust resistance genes into germ plasm of Mesoamerican origin where the marker does not traditionally exist. The use of bulked DNA samples may have concentrated resources toward the identification of RAPDs that were tightly linked to the target locus. Marker-based selection may provide an alternative to the time-consuming testcrosses required to pyramid bean rust resistance genes that exhibit epistasis.Research supported by the Michigan Agricultural Research Station and the USDA-ARS. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products that may also be suitable  相似文献   

13.
Pre‐messenger RNA (pre‐mRNA) splicing is essential in eukaryotic cells. In animals and yeasts, the DEAH‐box RNA‐dependent ATPase Prp16 mediates conformational change of the spliceosome, thereby facilitating pre‐mRNA splicing. In yeasts, Prp16 also plays an important role in splicing fidelity. Conversely, PRP16 orthologs in Chlamydomonas reinhardtii and nematode do not have an important role in general pre‐mRNA splicing, but are required for gene silencing and sex determination, respectively. Functions of PRP16 orthologs in higher plants have not been described until now. Here we show that the CLUMSY VEIN (CUV) gene encoding the unique Prp16 ortholog in Arabidopsis thaliana facilitates auxin‐mediated development including male‐gametophyte transmission, apical–basal patterning of embryonic and gynoecium development, stamen development, phyllotactic flower positioning, and vascular development. cuv‐1 mutation differentially affects splicing and expression of genes involved in auxin biosynthesis, polar auxin transport, auxin perception and auxin signaling. The cuv‐1 mutation does not have an equal influence on pre‐mRNA substrates. We propose that Arabidopsis PRP16/CUV differentially facilitates expression of genes, which include genes involved in auxin biosynthesis, transport, perception and signaling, thereby collectively influencing auxin‐mediated development.  相似文献   

14.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

15.
16.
In this paper we describe a method for preparing native, RNA-free, proteins from anti-m3G purified snRNPs (U1, U2, U4/U6 and U5) and the subsequent quantitative reconstitution of U1 and U2 snRNPs from purified proteins and snRNA. Reconstituted U1 and U2 snRNPs contained the full complement of core proteins, B, B, D1, D2, D3, E, F and G. Both the U1 and U2 reconstituted particles were stable in CsCl gradients and had the expected buoyant density of 1.4 g/cm3. Reconstituted RNP particle formation was not competited by a 50 fold molar excess of tRNA, as determined by gel retardation assays. However, U1 and U2 particle formation was reduced in the presence of an excess of cold U1 or U2 snRNA demonstrating a specific RNA-protein interaction. U1 and U2 snRNPs were also efficiently reconstituted in vitro, utilizing proteins prepared from mono Q purified U1 and U2 snRNPs. This suggests that for the assembly of snRNPs in vitro no auxiliary proteins other than bona fide snRNP proteins appear to be required. The potential of this reconstitution technique for investigating snRNP assembly and snRNA-protein interactions is discussed.Abbreviations PEG Polyethelene glycol - PMSF Phenylmethyl sulfonylfluoride - TP total proteins - mAb monoclonal antibody  相似文献   

17.
18.
A great variety of sex determination mechanisms exists in insect species. In Drosophila melanogaster sex is determined by the ratio between X chromosomes and autosomes, while in the blowfly Chrysomya rufifacies it is maternally determined. A cascade of genes which are involved in sex determination has been identified in D. melanogaster with the Sex-lethal gene (Sxl) as the key gene. We screened genomic libraries of C. rufifacies with a probe of the Sxl gene from D. melanogaster and isolated a genomic region that included most of the homologous gene. DNA- and protein-sequence comparison showed a high percent identity between the Chrysomya and the Drosophila gene. Up to 90% identity of the amino acid sequences was found in the region that contained the RNA-binding domains. The degree of identity is much lower outside of this functionally important region (18% identity). cDNA analysis showed a highly conserved exon-intron structure between the two species, although sex-specific splicing as used in D. melanogaster for the regulation of Sxl activity, could not be detected in C. rufifacies.  相似文献   

19.
In Drosophila melanogaster, regulation of the sex determination genes throughout development occurs by sex-specific splicing of their products. The first gene is Sex-lethal(Sxl). The downstream target of Sxl is the gene transformer (tra): the Sxl protein controls the female-specific splicing of the Tra pre-mRNA. The downstream target of the gene tra is the gene double-sex (dsx): the Tra protein of females, controls the female-specific splicing of the Dsx pre-mRNA. We have identified a gene, female-lethal-2-d fl(2)d, whose function is required for the female-specific splicing of Sxl pre-mRNA. In this report we analyze whether the gene fl(2)d is also required for the sex-specific splicing of both Tra and Dsx pre-mRNAs. We found that the Sxl protein is not sufficient for the female-specific splicing of Tra pre-mRNA, the fl(2)d function also being necessary. This gene, however, is not required for the female-specific splicing of Dsx pre-mRNA.  相似文献   

20.
Garden asparagus (Asparagus officinalis L.) is a dioecious species with male and female flowers on separate unisexual individuals. Since B- and C-functional MADS-box genes specify male and female reproductive organs, it is important to characterize these genes to clarify the mechanism of sex determination in monoecious and dioecious species. In this study, we isolated and characterized AODEF gene, a B-functional gene in the development of male and female flowers of A. officinalis. Southern hybridization identified a single copy of AODEF gene in asparagus genome. Northern blot analysis showed that this gene was specifically expressed in flower buds and not in vegetative tissues. In situ hybridization showed that during early hermaphrodite stages, AODEFgene was expressed in the inner tepal and stamen whorls (whorls 2 and 3, respectively), but not in the outer tepals (whorl 1), in both male and female flowers. In late unisexual developmental stages, the expression of AODEF gene was still detected in the inner tepals and stamens of male flowers, but the expression was reduced in whorls 2 and 3 of female flowers. Our results suggest that AODEF gene is probably not involved in tepal development in asparagus and that the expression of AODEF gene is probably controlled directly or indirectly by sex determination gene in the late developmental stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号