首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl-2 is a death repressor that protects cells from apoptosis mediated by a variety of stimuli. Bcl-2 expression is regulated by both pro- and anti-angiogenic factors; thus, it may play a central role during angiogenesis. However, the role of bcl-2 in vascular development and growth of new vessels requires further delineation. In this study, we investigated the physiological role of bcl-2 in development of retinal vasculature and retinal neovascularization during oxygen-induced ischemic retinopathy (OIR). Mice deficient in bcl-2 exhibited a significant decrease in retinal vascular density compared to wild-type mice. This was attributed to a decreased number of endothelial cells and pericytes in retinas from bcl-2-/- mice. We observed, in bcl-2-/- mice, delayed development of retinal vasculature and remodeling, and a significant decrease in the number of major arteries, which branch off from near the optic nerve. Interestingly, hyaloid vessel regression, an apoptosis-dependent process, was not affected in the absence of bcl-2. The retinal vasculature of bcl-2-/- mice exhibited a similar sensitivity to hyperoxia-mediated vessel obliteration compared to wild-type mice during OIR. However, the degree of ischemia-induced retinal neovascularization was significantly reduced in bcl-2-/- mice. These results suggest that expression of bcl-2 is required for appropriate development of retinal vasculature as well as its neovascularization during OIR.  相似文献   

2.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) is expressed on the surface of endothelial cells (EC) at high levels with important roles in angiogenesis and inflammation. However, the physiological role PECAM-1 plays during vascular development and angiogenesis remains largely unknown. Here we determined the role of PECAM-1 in the postnatal development of retinal vasculature and retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) using PECAM-1-deficient (PECAM-1−/−) mice. A significant decrease in retinal vascular density was observed in PECAM-1−/− mice compared with PECAM-1+/+ mice. This was attributed to a decreased number of EC in the retinas of PECAM-1−/− mice. An increase in the rate of apoptosis was observed in retinal vessels of PECAM-1−/− mice, which was compensated, in part, by an increase in the rate of proliferation. However, the development and regression of hyaloid vasculature were not affected in the absence of PECAM-1. We did not observe a significant defect in astrocytes, the number of endothelial tip cell filopodias, and the rate of developing retinal vasculature progression in PECAM-1−/− mice. However, we observed aberrant organization of arterioles and venules, decreased secondary branching, and dilated vessels in retinal vasculature of PECAM-1−/− mice. In addition, retinal neovascularization was attenuated in PECAM-1−/− mice during OIR despite an expression of VEGF similar to that of PECAM-1+/+ mice. Mechanistically, these changes were associated with an increase in EphB4 and ephrin B2, and a decrease in eNOS, expression in retinal vasculature of PECAM-1−/− mice. These results suggest that PECAM-1 expression and its potential interactions with EphB4/ephrin B2 and eNOS are important for survival, migration, and functional organization of EC during retinal vascular development and angiogenesis.  相似文献   

3.
A Pollack  G E Korte 《Acta anatomica》1992,143(2):151-159
Laser photocoagulation is associated with paradoxical results: it causes obliteration of vessels, but leads also to the formation of new ones. In an attempt to better understand this dual vascular response we conducted an ultrastructure study of the choroidal vascular repair following krypton laser injury in rats. Three processes were observed: recanalization, neovascularization, and atrophy of both recanalized and newly formed capillaries. Post-lasering repair of the choroidal vasculature can therefore be described as a remodeling process, characterized by both regeneration and involution. The latter appears to be a secondary process of atrophy, contributing to permanent vascular obliteration. These mechanisms might explain why, in spite of initial vascular regeneration, laser photocoagulation treatment has a beneficial effect on choroidal subretinal neovascularization.  相似文献   

4.

Background

Hyperoxia exposure of premature infants causes obliteration of the immature retinal microvessels, leading to a condition of proliferative vitreoretinal neovascularization termed retinopathy of prematurity (ROP). Previous work has demonstrated that the hyperoxia-induced vascular injury is mediated by dysfunction of endothelial nitric oxide synthase resulting in peroxynitrite formation. This study was undertaken to determine the involvement of the ureahydrolase enzyme arginase in this pathology.

Methods and Findings

Studies were performed using hyperoxia-treated bovine retinal endothelial cells (BRE) and mice with oxygen-induced retinopathy (OIR) as experimental models of ROP. Treatment with the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) prevented hyperoxia-induced apoptosis of BRE cells and reduced vaso-obliteration in the OIR model. Furthermore, deletion of the arginase 2 gene protected against hyperoxia-induced vaso-obliteration, enhanced physiological vascular repair, and reduced retinal neovascularization in the OIR model. Additional deletion of one copy of arginase 1 did not improve the vascular pathology. Analyses of peroxynitrite by quantitation of its biomarker nitrotyrosine, superoxide by dihydroethidium imaging and NO formation by diaminofluoroscein imaging showed that the protective actions of arginase 2 deletion were associated with blockade of superoxide and peroxynitrite formation and normalization of NOS activity.

Conclusions

Our data demonstrate the involvement of arginase activity and arginase 2 expression in hyperoxia-induced vascular injury. Arginase 2 deletion prevents hyperoxia-induced retinal vascular injury by preventing NOS uncoupling resulting in decreased reactive oxygen species formation and increased nitric oxide bioavailability.  相似文献   

5.
Bcl–2 is an anti-apoptotic protein with important roles in vascular homeostasis and angiogenesis. Mice globally lacking Bcl–2 (Bcl–2 -/-) are small in stature and succumb to renal failure shortly after weaning as a result of renal hypoplasia/cystic dysplasia. We have shown that Bcl–2 -/- mice displayed attenuated retinal vascular development and neovascularization. In vitro studies indicated that in addition to modulating apoptosis, Bcl–2 expression also impacts endothelial and epithelial cell adhesion, migration and extracellular matrix production. However, studies delineating the cell autonomous role Bcl–2 expression plays in the endothelium during vascular development, pruning and remodeling, and neovascularization are lacking. Here we generated mice carrying a conditional Bcl–2 allele (Bcl-2Flox/Flox) and VE-cadherin-cre (Bcl-2EC mice). Bcl-2EC mice were of normal stature and lifespan and displayed some but not all of the retinal vascular defects previously observed in global Bcl–2 deficient mice. Bcl-2EC mice had decreased numbers of endothelial cells, decreased retinal arteries and premature primary branching of the retinal vasculature, but unlike the global knockout mice, spreading of the retinal superficial vascular layer proceeded normally. Choroidal neovascularization was attenuated in Bcl-2EC mice, although retinal neovascularization accompanying oxygen-induced ischemic retinopathy was not. Thus, Bcl–2 expression in the endothelium plays a significant role during postnatal retinal vascularization, and pathological choroidal but not retinal neovascularization, suggesting vascular bed specific Bcl–2 function in the endothelium.  相似文献   

6.
In this study, we investigated whether the proangiogenic neuropeptides secretoneurin (SN), substance P (SP), and neuropeptide Y (NPY) contribute to the development of abnormal neovascularization in the oxygen-induced retinopathy (OIR) model in mice. By exposing litters of C57Bl/6N mice to 75% oxygen from postnatal day 7 (P7) until postnatal day 11 (P11) and then returning them to normoxic conditions, retinal ischemia and subsequent neovascularization on the retinal surface were induced. Retinae were dissected on P9, P11, P12-P14, P16 and P20, and the concentrations of SN, SP, NPY and VEGF determined by radioimmunoassay or ELISA. The levels of SN and SP increased in controls from P9 until P16 and from P9 until P14, respectively, whereas the levels of NPY were high at P9 and decreased thereafter until P20, suggesting that NPY may participate in the development of the retina. However, dipeptidyl peptidase IV (DPPIV) and the NPY-Y2 receptor were not detectable in the immature retina indicating that NPY is not involved in the physiological vascularization in the retina. Compared to controls, OIR had no effect on the levels of SN, whereas levels of both SP and NPY slightly decreased during hyperoxia. Normalization of the levels of SP, and to a more pronounced extent of NPY, was significantly delayed during relative hypoxia. This clearly indicates that these three neuropeptides are not involved in the pathogenesis of neovascularization in OIR. Moreover, since there were no differences in the expression of two vessel markers in the retina of NPY knockout mice versus controls at P14, NPY is also not involved in the delayed development of the intermediate and deep vascular plexus in the retina in this animal model.  相似文献   

7.
Retinopathy of prematurity (ROP) is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF) expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4) is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR). We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4−/− mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4−/− OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies.  相似文献   

8.
Retinal and choroidal neovascularization   总被引:20,自引:0,他引:20  
The unique vascular supply of the retina, the ability to visualize the vasculature in vivo, and the ability to selectively express genes in the retina make the retina an ideal model system to study molecular mechanisms of angiogenesis. In addition, this area of investigation has great clinical significance, because retinal and choroidal neovascularization are the most common causes of severe visual loss in developed countries and new treatments are needed. As a result, interest in ocular neovascularization is rapidly growing and there has been considerable recent progress. Use of genetically engineered mice in recently developed murine models provides a means to investigate the role of individual gene products in neovascularization in two distinct vascular beds, the retinal vasculature and the choroidal vasculature. It appears that angiogenesis in different vascular beds has common themes, but also has tissue-specific aspects. This review summarizes recent progress in the field of ocular neovascularization and the prospects that it provides for the development of new treatments.  相似文献   

9.
Retinal neovascularization (NV) and macular edema, resulting from blood-retinal barrier (BRB) breakdown, are major causes of visual loss in ischemic retinopathies. Choroidal NV (CNV) occurs in diseases of the retinal pigmented epithelium/Bruch's membrane complex and is another extremely prevalent cause of visual loss. We used mice in which the hypoxia response element (HRE) is deleted from the vascular endothelial growth factor (vegf) promoter (Vegf(delta/delta) mice) to explore the role of induction of VEGF through the HRE in these disease processes. Compared to wild type (Vegf+/+) mice with oxygen-induced ischemic retinopathy (OIR) in which vegf mRNA levels were increased and prominent retinal NV and BRB breakdown occurred, Vegf(delta/delta) littermates with OIR failed to increase vegf mRNA levels in the retina and had significantly less retinal NV and BRB breakdown, but showed prominent dilation of some superficial retinal vessels. Vegf(+/delta) littermates with ischemic retinopathy developed comparable retinal NV to Vegf+/+ mice, exhibited intermediate levels of BRB breakdown, and did not show vasodilation. In a mouse model of CNV, due to laser-induced rupture of Bruch's membrane, the area of CNV at Bruch's membrane rupture sites was more than tenfold greater in Vegf+/+ mice than in Vegf(delta/delta) littermates. In contrast to these dramatic differences in pathologic ocular NV, Vegf(delta/delta) mice showed subtle differences in retinal vascular development compared to Vegf+/+ mice; it was slightly delayed, but otherwise normal. These data suggest that induction of VEGF through the HRE in its promoter is critical for retinal and CNV, but not for retinal vascular development.  相似文献   

10.

Background

Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Müller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis.

Methodology/Principal Findings

Notably, during oxygen induced retinopathy (OIR) N-CAM accumulated on astrocytes surrounding the epiretinal tufts. Here, we show that N-CAM ablation results in reduced vascular tuft formation due to reduced endothelial cell proliferation despite an elevation in VEGFA mRNA expression, whereas retinal developmental angiogenesis was unaffected.

Conclusion/Significance

We conclude that N-CAM exhibits a regulatory function in pathological angiogenesis in OIR. This is a novel finding that can be of clinical relevance in diseases associated with proliferative vasculopathy.  相似文献   

11.
Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis.  相似文献   

12.
Vascular endothelial growth factor (VEGF) plays a critical role in normal development as well as retinal vasculature disease. During retinal vascularization, VEGF is most strongly expressed by not yet vascularized retinal astrocytes, but also by retinal astrocytes within the developing vascular plexus, suggesting a role for retinal astrocyte-derived VEGF in angiogenesis and vessel network maturation. To test the role of astrocyte-derived VEGF, we used Cre-lox technology in mice to delete VEGF in retinal astrocytes during development. Surprisingly, this only had a minor impact on retinal vasculature development, with only small decreases in plexus spreading, endothelial cell proliferation and survival observed. In contrast, astrocyte VEGF deletion had more pronounced effects on hyperoxia-induced vaso-obliteration and led to the regression of smooth muscle cell-coated radial arteries and veins, which are usually resistant to the vessel-collapsing effects of hyperoxia. These results suggest that VEGF production from retinal astrocytes is relatively dispensable during development, but performs vessel stabilizing functions in the retinal vasculature and might be relevant for retinopathy of prematurity in humans.  相似文献   

13.
Retinal neovascularization in retinopathy of prematurity (ROP) is the most common cause of blindness for children. Despite evidence that hypoxia inducible factor (HIF)‐1α ‐VEGF axis is associated with the pathogenesis of ROP, the inhibitors of HIF‐1α have not been established as a therapeutic target in the control of ROP pathophysiology. We investigated the hypothesis that degradation of HIF‐1α as a master regulator of angiogenesis in hypoxic condition, using β‐lapachone, would confer protection against hypoxia‐induced retinopathy without affecting physiological vascular development in mice with oxygen‐induced retinopathy (OIR), an animal model of ROP. The effects of β‐lapachone were examined after intraocular injection in mice with OIR. Intraocular administration of β‐lapachone resulted in significant reduction in hypoxia‐induced retinal neovascularization without retinal toxicity or perturbation of developmental retinal angiogenesis. Our results demonstrate that HIF‐1α–mediated VEGF expression in OIR is associated with pathological neovascularization, not physiological angiogenesis. Thus, strategies blocking HIF‐1α in the developing eye in the pathological hypoxia could serve as a novel therapeutic target for ROP.  相似文献   

14.
Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy.  相似文献   

15.
Endoplasmic reticulum (ER) stress occurs as a result of accumulation of unfolded or misfolded proteins in the ER and is involved in the mechanisms of various diseases, such as cancer and neurodegeneration. The goal of the present study was to clarify the relationship between ER stress and pathological neovascularization in the retina. Proliferation and migration of human retinal microvascular endothelial cells (HRMEC) were assessed in the presence of ER stress inducers, such as tunicamycin and thapsigargin. The expression of ER chaperone immunoglobulin heavy-chain binding protein (BiP), known as Grp78, was evaluated by real time RT-PCR, immunostaining, and Western blotting. Tunicamycin or thapsigargin was injected into the intravitreal body of oxygen-induced retinopathy (OIR) model mice at postnatal day 14 (P14) and retinal neovascularization was quantified at P17. The expression and localization of BiP in the retina was also evaluated in the OIR model. Exposure to tunicamycin and thapsigargin increased the proliferation and migration of HRMEC. Tunicamycin enhanced the expression of BiP in HRMEC at both the mRNA level and at the protein level on the cell surface, and increased the formation of a BiP/T-cadherin immunocomplex. In OIR model mice, retinal neovascularization was accelerated by treatments with ER stress inducers. BiP was particularly observed in the pathological vasculature and retinal microvascular endothelial cells, and the increase of BiP expression was correlated with retinal neovascularization. In conclusion, ER stress may contribute to the formation of abnormal vasculature in the retina via BiP complexation with T-cadherin, which then promotes endothelial cell proliferation and migration.  相似文献   

16.
Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions.  相似文献   

17.
Angiopoietin-2 plays an important role in retinal angiogenesis   总被引:13,自引:0,他引:13  
Angiopoietin 2 (Ang2) expression in the retina is increased during physiologic and pathologic neovascularization suggesting that it may be involved. In this study, we used Ang2-deficient mice to test that hypothesis. Mice deficient in Ang2 showed delayed and incomplete development of the superficial vascular bed of the retina, which develops primarily by vasculogenesis, and complete absence of the intermediate and deep vascular beds which develop by angiogenesis. In addition to incomplete retinal vascular development, Ang2-deficient mice showed lack of regression of the hyaloid vasculature, resulting in a phenotype that mimics infants with persistent fetal vasculature (PFV), a relatively common congenital abnormality. Exposure to high levels of oxygen resulted in partial regression of the retinal vessels, indicating that oxygen-induced regression of retinal vessels does not require Ang2. When these oxygen-exposed mice with few retinal vessels were moved to room air, there was no ischemia-induced retinal neovascularization. These data support the hypothesis that Ang2 plays a critical role in physiologic and pathologic angiogenesis, and physiologic, but not oxygen-induced vascular regression. The data also suggest that infants with PFV should be examined for genetic modifications that would be expected to cause perturbations in Tie2 signaling.  相似文献   

18.
Oxygen-induced retinopathy (OIR) is a model for human retinopathy of prematurity. In mice with OIR, beta-adrenergic receptor (β-AR) blockade with propranolol has been shown to ameliorate different aspects of retinal dysfunction in response to hypoxia. In the present study, we used the OIR model to investigate the role of distinct β-ARs on retinal proangiogenic factors, pathogenic neovascularization and electroretinographic responses. Our results demonstrate that β(2) -AR blockade with ICI 118,551 decreases retinal levels of proangiogenic factors and reduces pathogenic neovascularization, whereas β(1) - and β(3) -AR antagonists do not. Determination of retinal protein kinase A activity is indicative of the fact that β-AR blockers are indeed effective at the receptor level. In addition, the specificity of ICI 118,551 on retinal angiogenesis has been demonstrated by the finding that in mouse retinal explants, β(2) -AR silencing prevents ICI 118,551 effects on hypoxia-induced vascular endothelial growth factor accumulation. In OIR mice, ICI 118,551 is effective in increasing electroretinographic responses suggesting that activation of β(2) -ARs constitutes an important part of the retinal response to hypoxia. Lastly, immunohistochemical studies demonstrate that β(2) -ARs are localized to several retinal cells, particularly to Müller cells suggesting the possibility that β(2) -ARs play a role in regulating vascular endothelial growth factor production by these cells. The present results suggest that pathogenic angiogenesis, a key change in many hypoxic/ischemic vision-threatening retinal diseases, depends at least in part on β(2) -AR activity and indicate that β(2) -AR blockade can be effective against retinal angiogenesis.  相似文献   

19.
Current clinical treatments for ocular neovascularization are characterized by high possibility of damaging healthy tissues and high recurrence rates. It is necessary to develop new treatment methods to control neovascularization with a stable and effective effect. Kringle1 domain of hepatocyte growth factor (HGFK1) has anti-angiogenesis activity. Here, we established oxygen-induced retinopathy (OIR) model to study if using adeno-associated virus (AAV) as a delivery system to overexpression HGFK1 in retinal cells could benefit retinal neovascularization. We show that, overexpressed exogenous gene was mainly expressed in the inner and outer nuclear layer of the retina. Compared with control mice, the mice pretreated with rAAV-HGFK1 at P3 showed relatively normal vascular branches examined by fluorescence fundus angiography. Subsequent H&E staining and immunohistochemical staining of CD31 of the eye tissue sections showed that the mice received rAAV-HGFK1 had a relatively normal distribution of vascular endothelial cells. Additionally, immunohistochemical staining indicated a lower expression of VEGF in the eye tissues of rAAV-HGFK1 treated OIR mice. Further in vitro studies showed that HGFK1 could inhibit the proliferation but promote the apoptosis of bovine retinal microvascular endothelial cells (BRECs) under the presence of VEGF. Moreover, HGFK1 could inhibit VEGF induced ERK activation but promote p38 activation in BRECs. Therefore, we propose that intravitreal injection of rAAV-HGFK1 might be used to improve the retinal neovascularization and HGFK1 may function through regulating VEGF signaling pathway to inhibit neovascularization.  相似文献   

20.
Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号