共查询到20条相似文献,搜索用时 0 毫秒
1.
William A. Gosline 《Environmental Biology of Fishes》1994,40(3):219-226
Synopsis The paired fins of the basic, ancestral type of free-swimming acanthopterygian teleost serve primarily in guiding the forward course of movement and in maneuvering within the water column. In various scorpaeniform fishes the paired fins have taken on a number of other functions associated with a bottom-living mode of life. Among these are: defense against predation, probing for food items, propping the forward part of the body away from the bottom, progressing over it, digging into it, and the development of a suction disc for attachment to it. The relationship between these developments and paired-fin structure is the subject of the paper. 相似文献
2.
Andrey V. Bayramov Sergey A. Yastrebov Dmitry N. Mednikov Karina R. Araslanova Galina V. Ermakova Andrey G. Zaraisky 《Evolution & development》2024,26(3):e12478
The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates. 相似文献
3.
Webb AE Sanderford J Frank D Talbot WS Driever W Kimelman D 《Developmental biology》2007,311(2):369-382
The vertebrate fin fold, the presumptive evolutionary antecedent of the paired fins, consists of two layers of epidermal cells extending dorsally and ventrally over the trunk and tail of the embryo, facilitating swimming during the embryonic and larval stages. Development of the fin fold requires dramatic changes in cell shape and adhesion during early development, but the proteins involved in this process are completely unknown. In a screen of mutants defective in fin fold morphogenesis, we identified a mutant with a severe fin fold defect, which also displays malformed pectoral fins. We find that the cause of the defect is a non-sense mutation in the zebrafish lama5 gene that truncates laminin α5 before the C-terminal laminin LG domains, thereby preventing laminin α5 from interacting with its cell surface receptors. Laminin is mislocalized in this mutant, as are the membrane-associated proteins, actin and β-catenin, that normally form foci within the fin fold. Ultrastructural analysis revealed severe morphological abnormalities and defects in cell-cell adhesion within the epidermis of the developing fin fold at 36 hpf, resulting in an epidermal sheet that can not extend away from the body. Examining the pectoral fins, we find that the lama5 mutant is the first zebrafish mutant identified in which the pectoral fins fail to make the transition from an apical epidermal ridge to an apical fold, a transformation that is essential for pectoral fin morphogenesis. We propose that laminin α5, which is concentrated at the distal ends of the fins, organizes the distal cells of the fin fold and pectoral fins in order to promote the morphogenesis of the epidermis. The lama5 mutant provides novel insight into the role of laminins in the zebrafish epidermis, and the molecular mechanisms driving fin formation in vertebrates. 相似文献
4.
5.
Dr. James L. S. Cobb 《Cell and tissue research》1985,242(3):685-688
Summary The innervation of the connective tissue ligaments between the oral plates on the arm of a brittlestar by small branches of the hyponeural motor system is described. These branches arise from the hyponeural part of each segmental ganglion and pass laterally round the nerve cord and then orally across the epineural sinus to penetrate a small intersegmental node of juxtaligamental tissue located centrally. The endings of the nerve branches contain numerous small agranular vesicles and make chemical synapses onto the juxtaligamental cells. Processes from the juxtaligamental cells containing large granular vesicles ramify amongst the connective tissue of the oral ligaments. This innervation is associated with rapid changes in the stiffness of the connective tissue. 相似文献
6.
《Journal of electromyography and kinesiology》2014,24(6):860-867
A method to detect automatically the location of innervation zones (IZs) from 16-channel surface EMG (sEMG) recordings from the external anal sphincter (EAS) muscle is presented in order to guide episiotomy during child delivery. The new algorithm (2DCorr) is applied to individual motor unit action potential (MUAP) templates and is based on bidimensional cross correlation between the interpolated image of each MUAP template and two images obtained by flipping upside-down (around a horizontal axis) and left–right (around a vertical axis) the original one. The method was tested on 640 simulated MUAP templates of the sphincter muscle and compared with previously developed algorithms (Radon Transform, RT; Template Match, TM). Experimental signals were detected from the EAS of 150 subjects using an intra-anal probe with 16 equally spaced circumferential electrodes. The results of the three algorithms were compared with the actual IZ location (simulated signal) and with IZ location provided by visual analysis (VA) (experimental signals). For simulated signals, the inter quartile error range (IQR) between the estimated and the actual locations of the IZ was 0.20, 0.23, 0.42, and 2.32 interelectrode distances (IED) for the VA, 2DCorr, RT and TM methods respectively. 相似文献
7.
Dr. Raymond E. Papka 《Cell and tissue research》1978,194(2):219-236
Summary The development of innervation to the atrial myocardium of rabbits from 20th day of gestation to 35 days postnatal was studied ultrastructurally by electron microscopy and by demonstration of catecholamines by histofluorescence. Special attention was directed to the first morphologic appearance of nerve fibers and terminals and the closeness of juxtaposition of terminals with myocardial cells. Adrenergic and cholinergic terminals were identified on the basis of their differential ability to take-up and store the false adrenergic neurotransmitter 5-hydroxydopamine. Adrenergic terminals were first encountered at 20 days of gestation whereas cholinergic terminals could not be positively identified until the 24th day of gestation. Throughout development adrenergic terminals were more numerous than cholinergic, about 71 % of the terminals encountered being adrenergic. Many terminals approach closely (20–30 nm) to the sarcolemma of the muscle cells of the atrium. In many instances adrenergic and cholinergic fibers travel together in the same nerve bundle and are closely apposed without intervening Schwann-cell cytoplasm. Such a relationship could allow peripheral interaction between these fibers in the myocardium.Supported in part by the Kentucky Heart Association, Human Development Studies Program of the University of Kentucky and DHEW Grant 1 RO1 HL 22226-01 HED from the National Heart, Lung and Blood Institute. The technical assistance of Merle Wekstein is appreciated 相似文献
8.
Summary The innervation of the mesenteric microvasculature was studied in fetal and neonatal rabbits with the aid of methods demonstrating fluorescence of catecholamines and cholinesterase activity as well as a silver impregnation procedure. The results showed that: (1) adrenergic nerve fibers were present, coursing independently in the mesentery by day twenty-one of gestation, and were found routinely in the adventitia of arterioles and venules by day 25 of gestation; (2) cholinesterase positive cells and fibers of the myenteric plexus were present by day 18 of gestation but cholinergic fibers were not present in the mesentery until day 26; the latter not being associated with blood vessels; and (3) nerve fibers in the mesentery thought to be sensory stained positively with the Holmes silver method on day 18 of gestation.Supported by grants from the Akron Heart Association and the Heart Association of Southwestern Ohio.Recipient of N.I.H. Research Career Development Award AM-42, 370. 相似文献
9.
Summary The innervation of the endometrium of rabbit, rat, mink, mongoose and pig has been investigated electron microscopically. Large bundles of nerve fibers can be observed in the connective tissue spaces within the basal layer of the endometrium. Unmyelinated nerve fibers enter the lamina functionalis, terminal nerve fibers penetrate the basal lamina and make contact with the glandular and the cavum epithelial cells. The terminal axons contain abundant synaptic vesicles, dense core vesicles and mitochondria. To date, no specialized presynaptic or postsynaptic membranes have been found.Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (Grants Ku 210/5 and Be 524/4).Dedicated to Prof. Dr. Drs. h.c. Wolfgang Bargmann on his 70th birthday in friendship and admiration. 相似文献
10.
Immunohistochemistry for substance P (SP) in the rat thymus revealed fine varicose neural profiles in specific regions of the thymus. Thymic SP innervation was abundant within the capsule and interlobular septa. The majority of SP+ nerve fibers within the septa were free of vascular association, although some fibers were associated with the vasculature deep within the septa. SP+ nerve fibers entered the thymic cortex from the septa and distributed among cortical thymocytes and mast cells. Along the corticomedullary junction, SP+ nerve fibers were found in association with the vasculature. The medullary region of the thymus received only a sparse innervation of SP+ fibers. In addition, SP+ nerve fibers coursed adjacent to OX-8+ cells and mast cells in the extrathymic connective tissue surrounding the thymus. The present study provides evidence that SP is present in nerve fibers in the thymus, and may be available to interact with thymocytes, mast calls, and other cells in the thymus, and affect their development and function. 相似文献
11.
Ray‐finned fishes actively control the shape and orientation of their fins to either generate or resist hydrodynamic forces. Because of the emergent mechanical properties of their segmented, bilaminar fin rays (lepidotrichia), and actuation by multiple muscles, fish can control the rigidity and curvature of individual rays independently, thereby varying the resultant forces across the fin surfaces. Expecting that differences in fin‐ray morphology should reflect variation in their mechanical properties, we measured several musculoskeletal features of individual spines and rays of the dorsal and anal fins of bluegill sunfish, Lepomis macrochirus, and assessed their mobility and flexibility. We separated the fin‐rays into four groups based on the fin (dorsal or anal) or fin‐ray type (spine or ray) and measured the length of the spines/rays and the mass of the three median fin‐ray muscles: the inclinators, erectors and depressors. Within the two ray groups, we measured the portion of the rays that were segmented vs. unsegmented and branched vs. unbranched. For the majority of variables tested, we found that variations between fin‐rays within each group were significantly related to position within the fin and these patterns were conserved between the dorsal and anal rays. Based on positional variations in fin‐ray and muscle parameters, we suggest that anterior and posterior regions of each fin perform different functions when interacting with the surrounding fluid. Specifically, we suggest that the stiffer anterior rays of the soft dorsal and anal fins maintain stability and keep the flow across the fins steady. The posterior rays, which are more flexible with a greater range of motion, fine‐tune their stiffness and orientation, directing the resultant flow to generate lateral and some thrust forces, thus acting as an accessory caudal fin. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc. 相似文献
12.
David M. Irwin Tony Zhang 《Comparative biochemistry and physiology. Part D, Genomics & proteomics》2006,1(4):385-395
The glucose-dependent insulinotropic polypeptide (GIP) gene is believed to have originated from a gene duplication event very early in vertebrate evolution that also produced the proglucagon gene, yet so far GIP has only been described within mammals. Here we report the identification of GIP genes in chicken, frogs, and zebrafish. The chicken and frog genes are organized in a similar fashion to mammalian GIP genes and contain 6 exons and 5 introns in homologous locations. These genes can also potentially be proteolytically processed in identical patterns as observed in the mammalian sequences that would yield a GIP hormone that is only one amino shorter than the mammalian sequences due to the removal of an extra basic residue by carboxypeptidase E. The zebrafish GIP gene and precursor protein is shorter than other vertebrate GIP genes and is missing exon 5. The predicted zebrafish GIP hormone is also shorter, being only 31 amino acids in length. The zebrafish GIP hormone is similar in length to the proglucagon-derived peptide hormones, peptides encoded from the gene most closely related to GIP. We suggest that the structure of zebrafish GIP is more similar to the ancestral gene, and that tetrapod GIP has been extended. The mammalian GIP hormone has also undergone a period of rapid sequence evolution early in mammalian evolution. The discovery of a conserved GIP in diverse vertebrate suggests that it has an essential role in physiology in diverse vertebrates, although it may have only recently evolved a role as an incretin hormone. 相似文献
13.
14.
Wolfgang Kühnel 《Cell and tissue research》1972,134(3):435-438
Summary The innervation of the salt gland of the goose, the duck and the swan was investigated by means of electron microscopy. Axonal swellings were observed in relationship to secretory cells as well as to central duct cells. The terminals contain synaptic and densecored vesicles. There are no specialized pre- and postsynaptic membranes.Supported by the Deutsche Forschungsgemeinschaft (Ku 210/4). 相似文献
15.
In Polyodon spathula, the pectoral fin radials, with the exception of the metapterygium, are derived from the decomposition of a single continuous cartilage fin plate that is continuous with the scapulocoracoid. This cartilage sheet develops two interior splits to form three precursor pieces, and these decompose in a predictable way to generate the propterygium and radials. The metapterygium is an extension of the scapulocoracoid that segments off of it during early development. To our knowledge, this has not been reported for acipenserids or other basal actinopterygians. In teleosts, the proximal radials also develop from the "break up" of an initially continuous paddle-like sheet of cartilage along the posterior edge of the scapulocoracoid, and in Polypterus and sharks a similar pattern holds. Thus, the pattern observed in Polyodon may represent the basal developmental condition for the gnathostome pectoral fin. The process underlying development of the superficially similar cartilages of the pelvic and pectoral fins is different. In the pectoral fin, the metapterygium is segmented off of the scapulocoracoid and other radials form from the decomposition of the cartilage plate. In contrast, individual rod-like basipterygial elements form in a close one-to-one correspondence with the middle radials of the pelvic fin, but later fuse to form an anterior element that is branched in appearance. To evaluate further claims of similarity among the pectoral and pelvic fin elements of various fishes, the course of the development of these structures must be observed. The pectoral fin and girdle in Polyodon ossifies in a different sequence than that proposed as ancestral (and highly conserved) for actinopterygians: the supracleithrum ossifies significantly before the cleithrum. The later ossification of the cleithrum in Polyodon may be related to the primary use of the caudal fin vs. the pectoral fins in their locomotion. 相似文献
16.
Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon. 相似文献
17.
18.
Klaus Unsicker 《Cell and tissue research》1971,116(1):151-156
Summary The innervation of the adrenal cortex of the rat and the pig is investigated with the electron microscope. Nerve fibers containing synaptic and two types of dense-cored vesicles come into contact with endocrine cells. There are no specialized pre- and postsynaptic membranes. The synaptic cleft is about 200 Å wide. Generally the basement membrane between nerve and cell is absent. These observations are discussed on the base of more recent experimental findings. Small fibers having an average diameter of about 0.2 to 0.5 and containing only tubules and filaments are considered to represent parts of an afferent nervous system.Dedicated to Prof. v. Kügelgen on the occasion of his 60th birthday.Supported by the Deutsche Forschungsgemeinschaft. 相似文献
19.
Dr. Ian M. Taylor 《Cell and tissue research》1977,178(1):73-82
Summary The problem of development of the innervation of the rat atrioventricular node has been investigated by electron microscopy. Nerve bundles appear in relation to the node as early as the second postnatal day and vesiculated axons are seen throughout the entire node by the fourth day. Intimate contacts between nodal cells, axons and terminal varicosities are frequently observed.Use of the 5-hydroxydopamine tracer technique has enabled the identification of both cholinergic and adrenergic axons. It is concluded that the node has a dual innervation although cholinergic endings far outnumber those classified as adrenergic on the sixth postnatal day.These results are quite different to earlier findings made at the light microscope level and the discrepancies are discussed with respect to the histochemical techniques used. The suggestion that nodal differentiation is induced by nerves is considered in relation to the differences in cholinesterase activity exhibited by nodal cells during normal development and following neonatal sympathectomy. 相似文献
20.
Summary The innervation of the caudal neurosecretory system of Poecilia sphenops (black molly) was studied by use of the retrograde horseradish peroxidase (HRP) method. The structure of the caudal neurosecretory system in this species was well suited for application of HRP procedures. Acrylamide/HRP gel implants were placed in the nucleus of the caudal neurosecretory system. Two neuronal groups which contained HRP filled cells were found in the brain stem. Bilateral projections originate from the dorsal tegmentum of the midbrain and the reticular nucleus of the medulla.Supported by PHS 5429-19-4 and BNS 8206452The authors wish to thank Drs. R. Parsons, S. Freedman and J. Wells for reading this report and A. Angel for photographic assistance 相似文献